2023届日喀则市重点中学数学九年级第一学期期末达标检测试题含解析_第1页
2023届日喀则市重点中学数学九年级第一学期期末达标检测试题含解析_第2页
2023届日喀则市重点中学数学九年级第一学期期末达标检测试题含解析_第3页
2023届日喀则市重点中学数学九年级第一学期期末达标检测试题含解析_第4页
2023届日喀则市重点中学数学九年级第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点P(–2,3)关于原点对称的点Q的坐标为()A.(2,–3) B.(2,3) C.(3,–2) D.(–2,–3)2.如图是二次函数y=ax1+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b1>4ac;②1a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y1)为函数图象上的两点,则y1<y1.其中正确结论是()A.②④ B.①③④ C.①④ D.②③3.己知a、b、c均不为0,且,若,则k=()A.-1 B.0 C.2 D.34.如图,在由边长为1的小正方形组成的网格中,点,,,都在格点上,点在的延长线上,以为圆心,为半径画弧,交的延长线于点,且弧经过点,则扇形的面积为()A. B. C. D.5.掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有一次正面朝上 B.必有5次正面朝上C.可能有7次正面朝上 D.不可能有10次正面朝上6.如图,在菱形ABCD中,点E,F分别在AB,CD上,且,连接EF交BD于点O连接AO.若,,则的度数为()A.50° B.55° C.65° D.75°7.下列事件是必然事件的是()A.打开电视机,正在播放动画片 B.经过有交通信号灯的路口,遇到红灯C.过三点画一个圆 D.任意画一个三角形,其内角和是8.如图示,二次函数的图像与轴交于坐标原点和,若关于的方程(为实数)在的范围内有解,则的取值范围是()A. B. C. D.9.如图,△ABC中,AB=25,BC=7,CA=1.则sinA的值为()A. B. C. D.10.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个 B.15个 C.20个 D.35个11.反比例函数与在同一坐标系的图象可能为()A. B. C. D.12.用min{a,b}表示a,b两数中的最小数,若函数,则y的图象为()A. B. C. D.二、填空题(每题4分,共24分)13.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是________.14.如果是一元二次方程的一个根,那么的值是__________.15.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.16.在一个不透明的布袋里装有若干个只有颜色不同的红球和白球,其中有3个红球,且从布袋中随机摸出1个球是红球的概率是三分之一,则白球的个数是______17.从长度分别是,,,的四根木条中,抽出其中三根能组成三角形的概率是______.18.若,则_______.三、解答题(共78分)19.(8分)用适当的方法解下列方程:.20.(8分)元旦期间,商场中原价为100元的某种商品经过两次连续降价后以每件81元出售,设这种商品每次降价的百分率相同,求这个百分率.21.(8分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.22.(10分)(1)解方程:(2)已知关于的方程无解,方程的一个根是.①求和的值;②求方程的另一个根.23.(10分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为______;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.24.(10分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)请直接写出D点的坐标.(2)求二次函数的解析式.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.25.(12分)如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.(1)求S与x的函数关系式及x值的取值范围;(1)要围成面积为45m1的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?26.如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.

参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.根据关于原点对称的点的坐标的特点,∴点P(﹣2,3)关于原点过对称的点的坐标是(2,﹣3).故选A.考点:关于原点对称的点的坐标.2、C【分析】根据抛物线与x轴有两个交点可得△=b1﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣=﹣1,可对②进行判断;根据对称轴方程及点A坐标可求出抛物线与x轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x轴有两个交点,∴b1﹣4ac>0,即:b1>4ac,故①正确,∵二次函数y=ax1+bx+c的对称轴为直线x=﹣1,∴﹣=﹣1,∴1a=b,即:1a﹣b=0,故②错误.∵二次函数y=ax1+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,∴二次函数与x轴的另一个交点的坐标为(1,0),∴当x=1时,有a+b+c=0,故结论③错误;④∵抛物线的开口向下,对称轴x=﹣1,∴当x<﹣1时,函数值y随着x的增大而增大,∵﹣5<﹣1则y1<y1,则结论④正确故选:C.【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△=b1-4ac决定:△>0时,抛物线与x轴有1个交点;△=0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.3、D【解析】分别用含有k的代数式表示出2b+c,2c+a,2a+b,再相加即可求解.【详解】∵∴,,三式相加得,∵∴k=3.故选D.【点睛】本题考查了比的性质,解题的关键是求得2b+c=ak,2c+a=bk,2a+b=ck.4、B【分析】连接AC,根据网格的特点求出r=AC的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC,则r=AC=扇形的圆心角度数为∠BAD=45°,∴扇形的面积==故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.5、C【分析】利用不管抛多少次,硬币正面朝上的概率都是,进而得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,

所以不管抛多少次,硬币正面朝上的概率都是,

所以掷一枚质地均匀的硬币10次,

可能有7次正面向上;

故选:C.【点睛】本题考查了可能性的大小,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.6、C【分析】由菱形的性质以及已知条件可证明△BOE≌△DOF,然后根据全等三角形的性质可得BO=DO,即O为BD的中点,进而可得AO⊥BD,再由∠ODA=∠DBC=25°,即可求出∠OAD的度数.【详解】∵四边形ABCD为菱形∴AB=BC=CD=DA,AB∥CD,AD∥BC∴∠ODA=∠DBC=25°,∠OBE=∠ODF,又∵AE=CF∴BE=DF在△BOE和△DOF中,∴△BOE≌△DOF(AAS)∴OB=OD即O为BD的中点,又∵AB=AD∴AO⊥BD∴∠AOD=90°∴∠OAD=90°-∠ODA=65°故选C.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,以及等腰三角形三线合一的性质,熟练掌握菱形的性质,得出全等三角形的判定条件是解题的关键.7、D【分析】必然事件是在一定条件下,必然会发生的事件.依据定义判断即可.【详解】A.打开电视机,可能正在播放新闻或其他节目,所以不是必然事件;B.经过有交通信号灯的路口,遇到红灯,也可能遇到绿灯,所以不是必然事件;C.过三点画一个圆,如果这三点在一条直线上,就不能画圆,所以不是必然事件;D.任意画一个三角形,其内角和是,是必然事件.故选:D【点睛】本题考查的是必然事件,必然事件是一定发生的事件.8、D【分析】首先将代入二次函数,求出,然后利用根的判别式和求根公式即可判定的取值范围.【详解】将代入二次函数,得∴∴方程为∴∵∴故答案为D.【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.9、A【分析】根据勾股定理逆定理推出∠C=90°,再根据进行计算即可;【详解】解:∵AB=25,BC=7,CA=1,又∵,∴,∴△ABC是直角三角形,∠C=90°,∴=;故选A.【点睛】本题主要考查了锐角三角函数的定义,勾股定理逆定理,掌握锐角三角函数的定义,勾股定理逆定理是解题的关键.10、A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选A.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.11、B【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.12、C【分析】根据题意,把问题转化为二次函数问题.【详解】根据题意,min{x2+1,1-x2}表示x2+1与1-x2中的最小数,不论x取何值,都有x2+1≥1-x2,所以y=1-x2;可知,当x=0时,y=1;当y=0时,x=±1;则函数图象与x轴的交点坐标为(1,0),(-1,0);与y轴的交点坐标为(0,1).故选C.【点睛】考核知识点:二次函数的性质.二、填空题(每题4分,共24分)13、【分析】由题意根据概率的概念以及求概念公式进行分析即可求解.【详解】解:由题意可得:一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,共8个,从中随机摸出一个,则摸到黄球的概率是.故答案为:.【点睛】本题考查概率的求法,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14、6【分析】根据是一元二次方程的一个根可得m2-3m=2,把变形后,把m2-3m=2代入即可得答案.【详解】∵是一元二次方程的一个根,∴m2-3m=2,∴=2(m2-3m)+2=2×2+2=6,故答案为:6【点睛】本题考查一元二次方程的解的定义,熟练掌握定义并正确变形是解题关键.15、(2,10)或(﹣2,0)【解析】∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).16、6【分析】设白球的个数是x个,根据列出算式,求出x的值即可.【详解】解:设白球的个数是x个,根据题意得:解得:x=6.故答案为6.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17、【分析】四根木条中,抽出其中三根的组合有4种,计算出能组成三角形的组合,利用概率公式进行求解即可.【详解】解:能组成三角形的组合有:4,8,10;4,10,12;8,10,12三种情况,故抽出其中三根能组成三角形的概率是.【点睛】本题考查了列举法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,构成三角形的基本要求为两小边之和大于最大边.18、【分析】由题意直接根据分比性质,进行分析变形计算可得答案.【详解】解:,由分比性质,得.故答案为:.【点睛】本题考查比例的性质,熟练掌握并利用分比性质是解题的关键.三、解答题(共78分)19、【分析】将方程整理成一般式,再根据公式法求解可得.【详解】方程可变形为:,∵,∴∴.【点睛】本题主要考查解一元二次方程的能力和相反数的性质,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20、10%【分析】此题可设每次降价的百分率为x,第一次降价后价格变为100(1-x),第二次在第一次降价后的基础上再降,变为100(x-1)2,从而列出方程,求出答案.【详解】解:设每次降价的百分率为x,第二次降价后价格变为100(x-1)2元,

根据题意得:100(x-1)2=81,

即x-1=0.9,

解之得x1=1.9,x2=0.1.

因x=1.9不合题意,故舍去,所以x=0.1.

即每次降价的百分率为0.1,即10%.

答:这个百分率为10%.【点睛】此题考查了一元二次方程的应用,解答本题的关键在于分析降价后的价格,要注意降价的基础,另外还要注意解的取舍,难度一般.21、(1)40,补图详见解析;(2)108°;(3).【分析】(1)由一等奖人数及其所占百分比可得总人数,总人数减去一等奖、三等奖人数求出二等奖人数即可补全图形;(2)用360°乘以二等奖人数所占百分比可得答案;(3)画出树状图,由概率公式即可解决问题.【详解】解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人),补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;(3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是=.【点睛】此题主要考查统计图的运用及概率的求解,解题的关键是根据题意列出树状图,再利用概率告诉求解.22、(1),;(2)①,,②另一个根是1.【分析】(1)用因式分解法解方程即可;(2)①根据分式方程无解,先求出m的值,然后将m代入一元二次方程中求出k的值即可;②根据根与系数的关系可求出另一个根.【详解】(1)原方程可化为或解得:,(2)①解:将分式方程两边同时,得到,解得∵分式方程无解,,把代入方程,得求得②根据一元二次方程根与系数的关系可得∵∴另外一个根是1【点睛】本题主要考查解一元二次方程及一元二次方程根与系数的关系,分式方程无解问题,掌握分式方程无解问题的方法及一元二次方程根与系数的关系是解题的关键.23、(1)画图见解析;(2);(3).【解析】试题分析:(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA,再根据AB所扫过的面积=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OB求解,再求出BO扫过的面积=S扇形B1OB,然后计算即可得解.试题解析:(1)△A1OB1如图所示;(2)由勾股定理得,BO=,所以,点B所经过的路径长=(3)由勾股定理得,OA=,∵AB所扫过的面积=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OBBO扫过的面积=S扇形B1OB,∴线段AB、BO扫过的图形的面积之和=S扇形A1OA-S扇形B1OB+S扇形B1OB,=S扇形A1OA,=考点:1.作图-旋转变换;2.勾股定理;3.弧长的计算;4.扇形面积的计算.24、(1)D(﹣2,3);(2)二次函数的解析式为y=﹣x2﹣2x+3;(3)一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.【详解】试题分析:(1)由抛物线的对称性来求点D的坐标;(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),把点A、B、C的坐标分别代入函数解析式,列出关于系数a、b、c的方程组,通过解方程组求得它们的值即可;(3)由图象直接写出答案.试题解析:(1)∵如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,∴对称轴是x==﹣1.又点C(0,3),点C、D是二次函数图象上的一对对称点,∴D(﹣2,3);(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a、b、c常数),根据题意得,解得,所以二次函数的解析式为y=﹣x2﹣2x+3;(3)如图,一次函数值大于二次函数值的x的取值范围是x<﹣2或x>1.考点:1、抛物线与x轴的交点;2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论