版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ExtremeValuesofFunctionsofSeveralVariablesReviewWhatisthegradient(gradientvector)ofafunctionz=f(x,y)atapoint(a,b)?Whatisthegeometricsignificanceofthegradientofafunctionatpoint?Howtofindthedirectionalderivativeofafunctionatapoint(a,b)?Ifz=f(x,y),FindtangentplaneatthepointIfz=f(x,y),FindtotaldifferentialatthepointRecallFunctionsofone-variableLocalMaxLocalMin.StationarypointNeither非驻点InflectionpointFunctionsoftwovariablesDomain(M0
interiorpointin
D)Localminimum,alsoglobalminimumlocalmaximum/alsoglobalmaximumLocalmaxLocalminLocalmaxLocalminLocalmaxLocalminGlobalmaxGlobalminimumAlsolocalmaximumNotlocalminiHowtoFind?NecessaryconditionRecallAnecessaryconditionisalocalextremum,TheordoesnotexistForFunctionoftwovariables?ForFunctionoftwovariablesIf
attainsitslocalextremumatThenThegradientthereis0ordoesnotexistGeometricinterpretationExample:FindcandidatepointsofextremepointsSolutionStationarypoint在点(1,0)处取得极小值-1看上去这是一个椭圆抛物面极小值点
with(plots):x_axis:=plot3d([u,0,0],u=0..3,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=0..3,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..3,v=0..0.01,thickness=2):qumian:=implicitplot3d({z=x^2-x*y+y^2-2*x+y},x=-2..3,y=-2..2,z=-2..2,scaling=constrained,style=patchcontour,numpoints=10000,contours=20):display(qumian,x_axis,y_axis,z_axis,orientation=[40,70]);contourplot(x^2-x*y+y^2-2*x+y,x=-1..3,y=-2..2,contours=30,thickness=2);SolutionStationarypointsExample:Findcandidatepointsofextremepointswith(plots):contourplot(x^4+y^4-4*x*y,x=-1..1,y=-1..1,thickness=2,contours=50,coloring=[red,green]);SaddlepointSolutionStationarypointEample:FindcandidatepointsofextremepointsCriticalpointThepartialderivativedoesnotexist,sothegradientdoesnotexistat(0,0),but…qumian:=plot3d([abs(y)*cos(t),abs(y)*sin(t),y],y=0..1,t=0..2*Pi,grid=[30,30]):x_axis:=plot3d([u,0,0],u=-1..1,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=-1..1,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..2,v=0..0.01,thickness=2):display(qumian,x_axis,y_axis,z_axis);Wenowknowhowtofindcandidatesforpossiblelocalextrema,buthowtodeterminethenatureofacandidate:whetherornotitisalocalmaximum,localminimumorneither.Asufficientcondition:secondderivativetestIfisastationarypoint:AndisalocalextremumthenLocalminimumLocalmaximumSaddlepoint,notlocalextremuminconclusiveExample:FindlocalExtremaSolution:FindcriticalpointsfirstStationarypointSothereisalocalextremumandsoLocalminimumAttainsalocalminimumat(1,0)with(plots):x_axis:=plot3d([u,0,0],u=0..3,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=0..3,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..3,v=0..0.01,thickness=2):qumian:=implicitplot3d({z=x^2-x*y+y^2-2*x+y},x=-2..3,y=-2..2,z=-2..2,scaling=constrained,style=patchcontour,numpoints=10000,contours=20):display(qumian,x_axis,y_axis,z_axis,orientation=[40,70]);contourplot(x^2-x*y+y^2-2*x+y,x=-1..3,y=-2..2,contours=30,thickness=2);StationarypointsExample:FindlocalExtremaSolution:FindcriticalpointsfirstStationarypointsnoandsoLocalminimumyesAlsolocalminimumsowith(plots):qumian:=implicitplot3d(z=x^4+y^4-4*x*y,x=-2..2,y=-2..2,z=-2..3,numpoints=5000,style=patchcontour):x_axis:=plot3d([u,0,0],u=-1..3,v=0..0.01,thickness=3):y_axis:=plot3d([0,u,0],u=-1..1.5,v=0..0.01,thickness=3):z_axis:=plot3d([0,0,u],u=-1..3,v=0..0.01,thickness=3):display(qumian,x_axis,y_axis,z_axis,orientation=[-28,45]);with(plots):contourplot(x^4+y^4-4*x*y,x=-1..1,y=-1..1,thickness=2,contours=50,coloring=[red,green]);SaddlepointFindallthelocalmaxima,localminima,andsaddlepointsofthefunctionEND例解:先求驻点驻点无极值所以不是极值z=xy无极值
(0,0)是鞍点双曲抛物面鞍点
with(plots):qumian:=implicitplot3d(x*y=z,x=-2..2,y=-2..2,z=-2..2,grid=[15,15,15],style=patchcontour,contours=20):x_axis:=plot3d([u,0,0],u=-2..3,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=-2..3,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..3,v=0..0.01,thickness=2):display(qumian,x_axis,y_axis,z_axis,orientation=[-17,66],scaling=constrained);证设在点处取得极大值,则一元函数在点处取得极大值同理可得由一元函数极值的必要条件所以曲面z=f(x,y)在点(x0,y0,z0)有切平面:极值的必要条件的几何解释则设函数z=f(x,y)在点(x0,y0)取得极值水平的切平面Geometricinterpretation多么惊人的类似!极值的必要条件的梯度形式可记为:即比较:一元函数极值的必要条件:这种说法适用于n元函数多元函数取得极值得必要条件是:梯度为零矢驻点(stationarypoint)驻点(x0,y0):推论:有偏导数的极值点必为驻点驻点就是梯度为零矢的点注1驻点不一定是极值点例如双曲抛物面得驻点:(0,0)但z=f(0,0)=0不是极值:但在(0,0)的任何邻域内,函数值有正有负。非极值点的驻点称为鞍点(saddlepoint)qumian:=implicitplot3d(x*y=z,x=-2..2,y=-2..2,z=-2..2,color=yellow,grid=[15,15,15]):pingmian:=implicitplot3d(x=0.6,x=-2..2,y=-2..2,z=-2..2,color=green):x_axis:=plot3d([u,0,0],u=-2..3,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=-2..3,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..3,v=0..0.01,thickness=2):display(qumian,x_axis,y_axis,z_axis,orientation=[-17,66],scaling=constrained);鞍点SaddlepointThesaddlepointThesaddle在鞍点处,切平面将穿过曲面注2极值点不一定是驻点例如圆锥面在原点(0,0)取得极小值因为极值点不一定有偏导数但在原点(0,0),函数没有偏导数qumian:=plot3d([abs(y)*cos(t),abs(y)*sin(t),y],y=0..1,t=0..2*Pi,grid=[30,30]):x_axis:=plot3d([u,0,0],u=-1..1,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=-1..1,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..2,v=0..0.01,thickness=2):display(qumian,x_axis,y_axis,z_axis);以前曾经讲过设证明:偏导数fx(0,0)和fy(0,0)不存在证不存在同理,fy(0,0)也不存在上半圆锥面无偏导数无导数圆锥面在顶点无切平面原点是函数的奇点以上二元函数的极值的概念、极值的必要条件:梯度=零矢均可推广到三元、四元乃至n元函数极值的充分条件?回忆:一元函数极值的充分条件极值的充分条件(二阶):是极小值是极大值二元函数极值的充分条件定理读书是驻点:二阶偏导数注:此时(x0,y0)是鞍点是极值是极小值是极大值不是极值注:此时,A与C同号可能是极值也可能不是极值即,此法不能确定f(x0,y0)是否为极值须利用更高阶的偏导数进行判定极值充分条件的证明涉及二元函数的泰勒公式从略例解:先求驻点驻点有极值又所以是极小值在点(1,0)处取得极小值-1看上去这是一个椭圆抛物面极小值点
with(plots):x_axis:=plot3d([u,0,0],u=0..3,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=0..3,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..3,v=0..0.01,thickness=2):qumian:=implicitplot3d({z=x^2-x*y+y^2-2*x+y},x=-2..3,y=-2..2,z=-2..2,scaling=constrained,style=patchcontour,numpoints=10000,contours=20):display(qumian,x_axis,y_axis,z_axis,orientation=[40,70]);contourplot(x^2-x*y+y^2-2*x+y,x=-1..3,y=-2..2,contours=30,thickness=2);例解:先求驻点驻点驻点无极值又所以是极小值有极值也是极小值同理with(plots):qumian:=implicitplot3d(z=x^4+y^4-4*x*y,x=-2..2,y=-2..2,z=-2..3,numpoints=5000,style=patchcontour):x_axis:=plot3d([u,0,0],u=-1..3,v=0..0.01,thickness=3):y_axis:=plot3d([0,u,0],u=-1..1.5,v=0..0.01,thickness=3):z_axis:=plot3d([0,0,u],u=-1..3,v=0..0.01,thickness=3):display(qumian,x_axis,y_axis,z_axis,orientation=[-28,45]);裤子?with(plots):contourplot(x^4+y^4-4*x*y,x=-1..1,y=-1..1,thickness=2,contours=50,coloring=[red,green]);鞍点例解:先求驻点驻点无极值所以不是极值z=xy无极值
(0,0)是鞍点双曲抛物面鞍点
with(plots):qumian:=implicitplot3d(x*y=z,x=-2..2,y=-2..2,z=-2..2,grid=[15,15,15],style=patchcontour,contours=20):x_axis:=plot3d([u,0,0],u=-2..3,v=0..0.01,thickness=2):y_axis:=plot3d([0,u,0],u=-2..3,v=0..0.01,thickness=2):z_axis:=plot3d([0,0,u],u=0..3,v=0..0.01,thickness=2):display(qumian,x_axis,y_axis,z_axis,orientation=[-17,66],scaling=constrained);再论极值的充分条件:用Hesse矩阵设(x0,y0)是驻点:或作f(x,y)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论