




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.圆锥形纸帽的底面直径是18cm,母线长为27cm,则它的侧面展开图的圆心角为()A.60° B.90° C.120° D.150°2.如图,点是线段的垂直平分线与的垂直平分线的交点,若,则的度数是()A. B. C. D.3.如图,点E、F是边长为4的正方形ABCD边AD、AB上的动点,且AF=DE,BE交CF于点P,在点E、F运动的过程中,PA的最小值为()A.2 B.2 C.4﹣2 D.2﹣24.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:,则AC的长是()A.10米 B.米 C.15米 D.米5.若△ABC∽△DEF,且S△ABC:S△DEF=3:4,则△ABC与△DEF的周长比为A.3:4 B.4:3C.:2 D.2:6.把两条宽度都为的纸条交叉重叠放在一起,且它们的交角为,则它们重叠部分(图中阴影部分)的面积为().A. B.C. D.7.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位8.在做针尖落地的实验中,正确的是()A.甲做了4000次,得出针尖触地的机会约为46%,于是他断定在做第4001次时,针尖肯定不会触地B.乙认为一次一次做,速度太慢,他拿来了大把材料、形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的次数,这样大大提高了速度C.老师安排每位同学回家做实验,图钉自由选取D.老师安排同学回家做实验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不满意的就不要9.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()A. B. C. D.10.在平面直角坐标系中,将关于轴的对称点绕原点逆时针旋转得到,则点的坐标是()A. B. C. D.11.如图,在中,是的直径,点是上一点,点是弧的中点,弦于点,过点的切线交的延长线于点,连接,分别交于点,连接.给出下列结论:①;②;③点是的外心;④.其中正确的是()A.①②③ B.②③④ C.①③④ D.①②③④12.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A. B.2π C.3π D.12π二、填空题(每题4分,共24分)13.已知,是抛物线上两点,该抛物线的解析式是__________.14.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.15.如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为_____.16.如图,矩形ABCD中,AB=2,BC=,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.17.如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是________(填写正确结论的序号).18.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与反比例函数在第一象限内的图象交于点,且点的横坐标为.过点作轴交反比例函数的图象于点,连接.(1)求反比例函数的表达式.(2)求的面积.20.(8分)如图,这是一个小正方体所搭几何体的俯视图,正方形中的数字表示在该位置小正方体的个数.请你画出它的主视图和左视图.21.(8分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=6,DE=1,求⊙O的半径长.22.(10分)我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步.”其大意是:一矩形田地面积为864平方步,宽比长少12步,问该矩形田地的长和宽各是多少步?请用已学过的知识求出问题的解.23.(10分)探究题:如图1,和均为等边三角形,点在边上,连接.(1)请你解答以下问题:①求的度数;②写出线段,,之间数量关系,并说明理由.(2)拓展探究:如图2,和均为等腰直角三角形,,点在边上,连接.请判断的度数及线段,,之间的数量关系,并说明理由.(3)解决问题:如图3,在四边形中,,,,与交于点.若恰好平分,请直接写出线段的长度.24.(10分)已知抛物线经过点和,与轴交于另一点,顶点为.(1)求抛物线的解析式,并写出点的坐标;(2)如图,点分别在线段上(点不与重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;(3)若点在抛物线上,且,试确定满足条件的点的个数.25.(12分)某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图:请结合图中所给信息,解答下列问题(1)本次调查的学生共有人;(2)补全条形统计图;(3)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.26.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据圆锥侧面展开图的面积公式以及展开图是扇形,扇形半径等于圆锥母线长度,再利用扇形面积求出圆心角.【详解】解:根据圆锥侧面展开图的面公式为:πrl=π×9×27=243π,
∵展开图是扇形,扇形半径等于圆锥母线长度,∴扇形面积为:解得:n=1.
故选:C.【点睛】此题主要考查了圆锥侧面积公式的应用以及与展开图各部分对应情况,得出圆锥侧面展开图等于扇形面积是解决问题的关键.2、D【分析】连接AD,根据想的垂直平分线的性质得到DA=DB,DB=DC,根据等腰三角形的性质计算即可.【详解】解:连接AD,∵点D为线段AB与线段BC的垂直平分线的交点,∴DA=DB,DB=DC,∴设∠DAC=x°,则∠DCA=x°,∠DAB=∠ABD=(35+x)°∠ADB=180°-2(35+x)°∴∠BDC+∠ADB+∠DAC+∠DCA=180°,∠BDC+180-2(35+x)+x+x=180∴∠BDC=70°故选:D.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3、D【分析】根据直角三角形斜边上的中线等于斜边的一半,取BC的中点O,连接OP、OA,然后求出OP=CB=1,利用勾股定理列式求出OA,然后根据三角形的三边关系可知当O、P、A三点共线时,AP的长度最小.【详解】解:在正方形ABCD中,∴AB=BC,∠BAE=∠ABC=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°∴∠BCF+∠CBP=90°∴∠BPC=90°如图,取BC的中点O,连接OP、OA,则OP=BC=1,在Rt△AOB中,OA=,根据三角形的三边关系,OP+AP≥OA,∴当O、P、A三点共线时,AP的长度最小,AP的最小值=OA﹣OP=﹣1.故选:D.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系.确定出AP最小值时点P的位置是解题关键,也是本题的难点.4、B【解析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1:;∴AC=BC÷tanA=5米;故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.5、C【分析】根据相似三角形面积比等于相似比的平方,周长的比等于相似比解答.【详解】解:∵△ABC∽△DEF,且S△ABC:S△DEF=3:4,∴△ABC与△DEF的相似比为:2,∴△ABC与△DEF的周长比为:2.故选C【点睛】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方,周长的比等于相似比.6、A【分析】如图,过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,证明△ABE≌△ADF,从而证明四边形ABCD是菱形,再利用三角函数算出BC的长,最后根据菱形的面积公式算出重叠部分的面积即可.【详解】解:如图所示:过A作AE⊥BC于E,AF⊥CD于F,垂足为E,F,
∴∠AEB=∠AFD=90°,
∵AD∥CB,AB∥CD,
∴四边形ABCD是平行四边形,
∵纸条宽度都为1,
∴AE=AF=1,
在△ABE和△ADF中,
∴△ABE≌△ADF(AAS),
∴AB=AD,
∴四边形ABCD是菱形.
∴BC=AB,
∵=sinα,
∴BC=AB=,
∴重叠部分(图中阴影部分)的面积为:BC×AE=1×=.
故选:A.【点睛】本题考查菱形的判定与性质,以及三角函数的应用,关键是证明四边形ABCD是菱形,利用三角函数求出BC的长.7、B【解析】根据“左加右减,上加下减”的原则进行解答即可:∵y=x2,∴平移过程为:先向左平移2个单位,再向下平移3个单位.故选B.8、B【解析】试题分析:根据模拟实验带有一定的偶然性,相应的条件性得到正确选项即可.A、在做第4001次时,针尖可能触地,也可能不触地,故错误,不符合题意;B、符合模拟实验的条件,正确,符合题意;C、应选择相同的图钉,在类似的条件下实验,故错误,不符合题意;D、所有的实验结果都是有可能发生,也有可能不发生的,故错误,不符合题意;故选B.考点:本题考查的是模拟实验的条件点评:解答本题的关键是注意实验器具和实验环境应相同,实验的结果带有一定的偶然性.9、A【分析】根据概率公式计算即可得出答案.【详解】∵“绿水青山就是金山银山”这句话中只有10个字,其中“山”字有三个,∴P(山)=故选:A.【点睛】本题考查了简单事件概率的计算.熟记概率公式是解题的关键.10、C【分析】先求出点B的坐标,再根据旋转图形的性质求得点的坐标【详解】由题意,关于轴的对称点的坐标为(-1,-4),如图所示,点绕原点逆时针旋转得到,过点B’作x轴的垂线,垂足为点C则OC=4,B’C=1,所以点B’的坐标为故答案选:C.【点睛】本题考查平面直角坐标系内图形的旋转,把握旋转图形的性质是解题的关键.11、B【分析】①由于与不一定相等,根据圆周角定理可判断①;
②连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可判断②;
③先由垂径定理得到A为的中点,再由C为的中点,得到,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可判断③;
④正确.证明△APF∽△ABD,可得AP×AD=AF×AB,证明△ACF∽△ABC,可得AC2=AF×AB,证明△CAQ∽△CBA,可得AC2=CQ×CB,由此即可判断④;【详解】解:①错误,假设,则,,,显然不可能,故①错误.②正确.连接.是切线,,,,,,,,,故②正确.③正确.,,,,,,是直径,,,,,,,点是的外心.故③正确.④正确.连接.,,,,,,,,可得,,,,可得,.故④正确,故选:.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.12、C【解析】试题分析:根据弧长公式:l==3π,故选C.考点:弧长的计算.二、填空题(每题4分,共24分)13、【分析】将A(0,3),B(2,3)代入抛物线y=-x2+bx+c的解析式,可得b,c,可得解析式.【详解】∵A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,∴代入得,解得:b=2,c=3,∴抛物线的解析式为:y=-x2+2x+3.故答案为:y=-x2+2x+3.【点睛】本题主要考查了待定系数法求解析式,利用代入法解得b,c是解答此题的关键.14、2【详解】试题分析:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,解得r=2cm.考点:圆锥侧面展开扇形与底面圆之间的关系.15、y=﹣x或y=-4x【解析】分析:直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.详解:当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,则A′(-3,4),设过点A′的正比例函数的解析式为:y=kx,则4=-3k,解得:k=-,则过点A′的正比例函数的解析式为:y=-x,同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A′,此时A′(1,-4),设过点A′的正比例函数的解析式为:y=k′x,则-4=k′,则过点A′的正比例函数的解析式为:y=-4x.故答案为y=﹣x或y=-4x.点睛:此题主要考查了旋转的性质、平移的性质、待定系数法求出正比例函数解析式,正确得出对应点坐标是解题关键.16、3﹣【分析】根据图形可以求得BF的长,然后根据图形即可求得S1﹣S2的值.【详解】解:∵在矩形ABCD中,AB=2,BC=,F是AB中点,∴BF=BG=1,∴S1=S矩形ABCD-S扇形ADE﹣S扇形BGF+S2,∴S1-S2=2×--=3-,故答案为:3﹣.【点睛】此题考查的是求不规则图形的面积,掌握矩形的性质和扇形的面积公式是解决此题的关键.17、①③④【分析】根据题意分别求出两个二次函数的解析式,根据函数的对称轴判定①;令x=0,求出y2的值,比较判定②;观察图象,判定③;令y=3,求出A、B、C的横坐标,然后求出AB、AC的长,判定④.【详解】∵抛物线y1=a(x+2)2+m与抛物线y2=(x﹣3)2+n的对称轴分别为x=-2,x=3,∴两条抛物线的对称轴距离为5,故①正确;∵抛物线y2=(x﹣3)2+n交于点A(1,3),∴2+n=3,即n=1;∴y2=(x﹣3)2+1,把x=0代入y2=(x﹣3)2+1得,y=≠5,②错误;由图象可知,当x>3时,y1>y2,∴x>3时,y1﹣y2>0,③正确;∵抛物线y1=a(x+2)2+m过原点和点A(1,3),∴,解得,∴.令y1=3,则,解得x1=-5,x2=1,∴AB=1-(-5)=6,∴A(1,3),B(-5,3);令y2=3,则(x﹣3)2+1=3,解得x1=5,x2=1,∴C(5,3),∴AC=5-1=4,∴BC=10,∴y轴是线段BC的中垂线,故④正确.故答案为①③④.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值.18、【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】解:如图,连接BD.∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF﹣S△ABD=.故答案是:.【点睛】此题主要考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形EBFD的面积等于△ABD的面积是解题关键.三、解答题(共78分)19、(1);(2)【分析】(1)首先将点B的横坐标代入一次函数,得出其坐标,然后代入反比例函数,即可得出解析式;(2)首先求出点A的坐标,然后分别求出AC、BD,即可求得面积.【详解】一次函数的图象过点,且点的横坐标为,,点的坐标为.点在反比例函数的图象上,,反比例函数的表达式为;一次函数的图象与轴交于点,当时,,点的坐标为,轴,点的纵坐标与点的纵坐标相同,是2,点在反比例函数的图象上,当时,,解得,过作于,则,【点睛】此题主要考查一次函数与反比例函数综合应用,熟练掌握,即可解题.20、见解析【分析】主视图从左往右3列正方体的个数依次为3,2,3;左视图从左往右2列正方体的个数依次为3,3;依此画出图形即可【详解】如图所示:【点睛】考查画几何体的三视图;用到的知识点为:主视图,左视图分别是从物体的正面,左面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.21、(1)见解析;(2)⊙O的半径为1.【分析】(1)根据圆周角定理即可得出∠A=∠D,∠C=∠ABD,从而可求证△AEC∽△DEB;
(2)由垂径定理可知BE=3,设半径为r,由勾股定理可列出方程求出r.【详解】解:(1)根据“同弧所对的圆周角相等”,
得∠A=∠D,∠C=∠ABD,
∴△AEC∽△DEB
(2)∵CD⊥AB,O为圆心,
∴BE=AB=3,
设⊙O的半径为r,
∵DE=1,则OE=r−1,
在Rt△OEB中,
由勾股定理得:OE2+EB2=OB2,
即:(r−1)2+32=r2,
解得r=1,即⊙O的半径为1.【点睛】本题考查圆的综合问题,涉及相似三角形的判定与性质,勾股定理,垂径定理等知识,综合程度较高,需要灵活运用所学知识.22、矩形的阔为24步,长为36步.【解析】设阔为x步,则长为(x+12)步,根据面积为864,即可得出方程求解即可.【详解】设阔为x步,则长为(x+12)步,由题意可得:x(x+12)=864,解得:x1=24,x2=﹣36(舍),24+12=36,答:矩形的阔为24步,长为36步.【点睛】本题考查了一元二次方程的应用,为面积问题,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.23、(1)①;②线段、、之间的数量关系为:,理由见解析;(2),,理由见解析.(3)理由见解析.【分析】(1)①证明△BAD≌△CAE(SAS),可得结论:∠ACE=∠B=60°;②由△BAD≌△CAE,得BD=CE,利用等边三角形的AC=BC=BD+DC等量代换可得结论;(2)如图2,先证明△ABD≌△ACE,得BD=CE,∠ACE=∠B=45°,同理可得结论;(3)如图3,作辅助线,构建如图2的两个等腰直角三角形,已经有一个△ABD,再证明△ACF也是等腰直角三角形,则利用(2)的结论求AC的长.【详解】(1)①∵和均为等边三角形,∴,,,∴,即,∴,∴,②线段、、之间的数量关系为:;理由是:由①得:,∴,∵,∴;(2),,理由是:如图2,∵和均为等腰直角三角形,且,∴,,,即,∴,∴,,∵,∴,∵在等腰直角三角形中,,∴;(3)如图3,过作的垂线,交的延长线于点,∵,,,∴,,∵,∴以BD的中点为圆心,为半径作圆,则A,C在此圆上,∴、、、四点共圆,∵恰好平分∴,∴是等腰直角三角形,由(2)得:,∴.【点睛】本题是四边形的综合题,考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的性质和判定、四点共圆的判定,圆周角定理,本题还运用了类比的思想,从问题发现到解决问题,第三问有难度,作辅助线,构建等腰直角三角形ACF是关键.24、(1);(2)可能,的长为或;(3)当时,满足条件的点的个数有个,当时,满足条件的点的个数有个,当时,满足条件的点的个数有个(此时点在的左侧).【解析】(1)利用待定系数法,转化为解方程组即可解决问题.(2)可能分三种情形①当时,②当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中政治议题中心教学法在提高学生信息获取与处理能力方面的应用研究论文
- 初中语文名著阅读教学中的阅读策略与阅读习惯养成研究论文
- 校园文化品牌传播策略对小学生创新能力培养的影响研究论文
- 初中生科技展览学习体验与科学探究能力提升研究论文
- 基于问题导向的高中化学实验创新能力培养研究论文
- 艺考生课程管理制度
- 小学语文《树和喜鹊》课件
- 设备维修个人工作计划
- 设备开箱检验记录
- 2025年山东省济宁市中考历史模拟试卷(含答案)
- 基于AI的年度营销策略创新
- 校园通创业计划书
- 2025陕煤集团榆林化学有限责任公司招聘(300人)笔试参考题库附带答案详解
- 临床重症患者坐式八段锦要点、适应人群、效果及注意事项
- 2024年四川省内江市资中县小升初数学试卷
- 地理-2025年江西省中考第一次模拟考试(全解全析)
- 开轰趴馆的创业计划书
- 《基础护理学(第七版)》考前强化模拟练习试题库500题(含答案)
- 【MOOC】《算法设计与分析》(东北大学) 中国大学慕课答案
- 病案管理系统用户使用手册
- 国家开放大学《应用写作(汉语)》形考任务1-6答案
评论
0/150
提交评论