下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省淄博市张店第二中学2022-2023学年高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的定义域是:(
)A.
B.
C.
D.参考答案:C2.在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为()A.
B.C.
D.参考答案:B3.设椭圆上一点P到其左焦点的距离为3,到右焦点的距离为1,则P到右准线的距离为(
)
A.6
B.2
C.
D.参考答案:B略4.已知集合,则实数a的取值范围是
(
)
A.
B.
C.
D.参考答案:A略5.命题“如果,那么”的逆否命题是(
)A.如果,那么
B.如果,那么C.如果,那么
D.如果,那么参考答案:C略6.已知向量=(1,5,﹣2),=(3,1,2),=(x,﹣3,6).若DE∥平面ABC,则x的值是()A.5 B.3 C.2 D.﹣1参考答案:A【考点】共线向量与共面向量.【分析】设平面ABC的法向量为=(x,y,z),则,由DE∥平面ABC,可得=0,解出即可得出.【解答】解:∵设平面ABC的法向量为=(x,y,z),则,即,取=(6,﹣4,﹣7).∵DE∥平面ABC,∴=6x﹣3×(﹣4)+6×(﹣7)=0,解得x=5.故选:A.【点评】本题考查了向量垂直与数量积的关系、线面平行的性质、法向量的应用,考查了推理能力与计算能力,属于中档题.7.已知集合,,则(
)A.
B.(2,4]
C.(1,4)
D.[2,4)参考答案:D8.已知椭圆的方程为为其左、右焦点,为离心率,为椭圆上一动点,则有如下说法:①当时,使为直角三角形的点有且只有4个;②当时,使为直角三角形的点有且只有6个;③当时,使为直角三角形的点有且只有8个;以上说法中正确的个数是(
)A.0
B.1
C.2
D.3参考答案:D
考点:椭圆的几何性质.【方法点晴】本题主要考查了椭圆的几何性质问题,其中解答中涉及椭圆的标准方程及其简单的几何性质,椭圆的离心率等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及数形结合思想的应用,本题的解答中,根据椭圆的离心率的取值范围,得出椭圆的短轴的顶点构成的角的取值范围是解答的关键,属于中档试题.9.下列向量中不垂直的一组是
A.,
B.,
C.,
D.,参考答案:B10.函数的大致图象为(
)
A.
B.
C.
D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.如图,已知四面体ABCD的棱AB∥平面,且,其余的棱长均为2,有一束平行光线垂直于平面,若四面体ABCD绕AB所在直线旋转.且始终在平面的上方,则它在平面内影子面积的最小值为________.参考答案:【分析】在四面体中找出与垂直的面,在旋转的过程中在面内的射影始终与垂直求解.【详解】和都是等边三角形,取中点,易证,,即平面,所以.设在平面内的投影为,则在四面体绕着旋转时,恒有.因为平面,所以在平面内的投影为.因此,四面体在平面内的投影四边形的面积要使射影面积最小,即需最短;在中,,,且边上的高为,利用等面积法求得,边上的高,且,所以旋转时,射影的长的最小值是.所以【点睛】本题考查空间立体几何体的投影问题,属于难度题.12.已知函数f(x)=x3+2x2-ax+1在区间(-1,1)上恰有一个极值点,则实数a的取值范围是________.参考答案:-1<a<7易知f′(x)=3x2+4x-a.因为函数在区间(-1,1)上恰有一个极值点,所以g(x)=3x2+4x-a=0在区间(-1,1)上只有一个解,故有g(-1)·g(1)<0,所以,(-1-a)(7-a)<0,所以-1<a<7.13.若实数x满足不等式|x﹣3|≥1,则x的取值范围为.参考答案:x≥4或x≤2【考点】绝对值不等式的解法.【分析】利用绝对值的意义进行转化,即可求出x的取值范围.【解答】解:∵|x﹣3|≥1,∴x﹣3≥1或x﹣3≤﹣1,∴x≥4或x≤2.故答案为:x≥4或x≤2.14.若函数在上单调递增,则实数的取值范围是
.参考答案:15.已知焦点在x轴上的椭圆mx2+ny2=1的离心率为,则等于.参考答案:【考点】椭圆的简单性质.【分析】焦点在x轴上的椭圆mx2+ny2=1中:a2=,b2=,e2=1﹣=1﹣=,可得m:n【解答】解:焦点在x轴上的椭圆mx2+ny2=1中:a2=,b2=,e2=1﹣=1﹣=,∴.故答案为:16.在等比数列{an}中,若a5=2,a6=3,则a7=.参考答案:【考点】等比数列的性质.【专题】计算题;规律型;等差数列与等比数列.【分析】根据题意,由等比数列{an}中,a5、a6的值可得公比q的值,进而由a7=a6×q计算可得答案.【解答】解:根据题意,等比数列{an}中,设其公比为q,若a5=2,a6=3,则q==,则a7=a6×q=3×=;故答案为:.【点评】本题考查等比数列的性质,注意先由等比数列的性质求出该数列的公比.17.若不等式(x﹣a)(x﹣b)<0的解集为(﹣1,2),则a+b的值是
.参考答案:1【考点】一元二次不等式的解法.【分析】根据一元二次方程与不等式的关系,利用根与系数的关系建立等式,解之即可.【解答】解:不等式(x﹣a)(x﹣b)<0的解集为(﹣1,2),可得(x﹣a)(x﹣b)=0的解x1=﹣1,x2=2,即a=﹣1,b=2,或者a=2,b=﹣1,∴a+b的值等于1.故答案为1.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知双曲线的右焦点与抛物线的焦点重合,求该双曲线的焦点到其渐近线的距离.参考答案:略19.已知函数.(1)讨论f(x)的单调性;(2)当时,,记函数在上的最大值为m,证明:.参考答案:(1)单调递减区间为,单调递增区间为;(2)见解析.【分析】(1)利用导数求函数的单调性即可;(2)对求导,得,因为,所以,令,求导得在上单调递增,,使得,进而得在上单调递增,在上单调递减;所以,令,求导得在上单调递增,进而求得m的范围.【详解】(1)因为,所以,当时,;当时,,故的单调递减区间为,单调递增区间为.(2)当时,,则,当时,,令,则,所以在上单调递增,因为,,所以存在,使得,即,即.故当时,,此时;当时,,此时.即在上单调递增,在上单调递减.则.令,,则.所以在上单调递增,所以,.故成立.【点睛】本题考查了利用导数求函数的单调性和取值范围,也考查了构造新函数,转化思想,属于中档题.20.(本小题满分10分)如图,在中,点C(1,3).(1)求OC所在直线的方程;(2)过点C作CD⊥AB于点D,求CD所在直线的方程.参考答案:(1)点O(0,0),点C(1,3),OC所在直线的斜率为.
(2)在中,,CD⊥AB,CD⊥OC.CD所在直线的斜率为.
CD所在直线方程为.
21.求直线y=2x+1关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中山职业技术学院《电能计量技术》2023-2024学年第一学期期末试卷
- 昭通学院《智能终端与移动应用开发》2023-2024学年第一学期期末试卷
- 云南现代职业技术学院《传递过程导论》2023-2024学年第一学期期末试卷
- 企业市值管理中财务透明度的提升策略研究
- DB2201T 64-2024 梅花鹿布鲁氏菌病胶体金免疫层析检测方法
- 职业导论-房地产经纪人《职业导论》真题汇编1
- 房地产经纪操作实务-《房地产经纪操作实务》押题密卷2
- 年度培训工作总结
- 119消防安全月活动方案
- 二零二五年度废塑料编织袋回收与再生PE膜合同3篇
- 关于提升高寒缺氧气候条件下队伍综合救援水平的思考
- 2024年四川省成都市锦江区中考数学一诊试卷(附答案解析)
- 小学生中医药文化知识科普传承中医文化弘扬国粹精神课件
- ASME材料-设计许用应力
- 吸痰护理操作
- 室内灯光设计总结报告
- 子宫动脉栓塞术后的护理
- 五年级数学(小数乘法)计算题及答案
- 第十七章-阿法芙·I·梅勒斯的转变理论
- 计算机应用技术专业汇报课件
- 档案基础业务培训课件
评论
0/150
提交评论