四川省成都市双流县太平中学2021年高二数学理下学期期末试卷含解析_第1页
四川省成都市双流县太平中学2021年高二数学理下学期期末试卷含解析_第2页
四川省成都市双流县太平中学2021年高二数学理下学期期末试卷含解析_第3页
四川省成都市双流县太平中学2021年高二数学理下学期期末试卷含解析_第4页
四川省成都市双流县太平中学2021年高二数学理下学期期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市双流县太平中学2021年高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若方程(2m2+m﹣3)x+(m2﹣m)y﹣4m+1=0表示一条直线,则实数m满足()A.m≠0 B.m≠﹣C.m≠1 D.m≠1,m≠﹣,m≠0参考答案:C【考点】确定直线位置的几何要素.【分析】明确Ax+By+C=0表示直线的条件是A、B不同时为0,则由2m2+m﹣3与m2﹣m同时为0,求出2m2+m﹣3与m2﹣m不同时为0时m的取值范围.【解答】解:若方程(2m2+m﹣3)x+(m2﹣m)y﹣4m+1=0表示一条直线,则2m2+m﹣3与m2﹣m不同时为0,而由得m=1,所以m≠1时,2m2+m﹣3与m2﹣m不同时为0.故选C.【点评】本题主要考查Ax+By+C=0表示直线的条件,同时考查解方程组及补集知识.2.已知函数,,若成立,则的最小值为(

)A.

B.

C.

D.参考答案:A设,则:,令,则,导函数单调递增,且,则函数在区间上单调递减,在区间上单调递增,结合函数的单调性有:,即的最小值为.本题选择A选项.

3.某中学四名高二学生约定“五一”节到本地区三处旅游景点做公益活动,如果每个景点至少一名同学,且甲乙两名同学不在同一景点,则这四名同学的安排情况有()A.10种 B.20种 C.30种 D.40种参考答案:C【考点】排列、组合的实际应用.【专题】应用题;排列组合.【分析】由题意,不考虑甲乙两名同学在同一景点,有=36种,甲乙两名同学在同一景点,有=36种,即可得出结论.【解答】解:由题意,不考虑甲乙两名同学在同一景点,有=36种,甲乙两名同学在同一景点,有=6种,所以这四名同学的安排情况有36﹣6=30种.故选:C.【点评】本题考查排列、组合知识,考查学生的计算能力,比较基础.4.已知a=,b=log2,c=,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a参考答案: C【考点】对数值大小的比较.【分析】判断a、b、c与1,0的大小,即可得到结果.【解答】解:a=∈(0,1),b=log2<0,c=log>1.∴c>a>b.故选:C.5.若随机变量η的分布列如下:01230.10.20.20.30.10.1则当时,实数x的取值范围是()A.x≤2

B.1≤x≤2

C.1<x≤2

D.1<x<2参考答案:C略6.若f(x)=f1(x)=,fn(x)=fn-1[f(x)](n≥2,n∈N*),则f(1)+f(2)+…+f(n)+f1(1)+f2(1)+…+fn(1)=()A.n

B. C.

D.1参考答案:A7.已知函数根据函数的性质、积分的性质和积分的几何意义,探求的值,结果是(

)A.+

B.

C.1

D.0参考答案:D8.设,若,则(

)A.

B.

C.

D.参考答案:B略9.椭圆短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率为()A.

B.

C.

D.参考答案:A略10.对某同学的6次数学测试成绩(满分100分)进行统计,作出的茎叶如图所示,给出关于该同学数学成绩的以下说法:①中位数为83;②众数为83;③平均数为85;④极差为12.其中正确说法序号是()A.①② B.③④ C.②③ D.①③参考答案:C【考点】众数、中位数、平均数.【专题】计算题;图表型;概率与统计.【分析】根据已知中的茎叶图,求出中位数,众数,平均数及极差,可得答案.【解答】解:由已知中茎叶图,可得:①中位数为84,故错误;②众数为83,故正确;③平均数为85,故正确;④极差为13,故错误.故选:C.【点评】本题考查的知识点是茎叶图,统计数据计算,难度不大,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.在一次晚会上,9位舞星共上演个“三人舞”节目,若在这些节目中,任二人都曾合作过一次,且仅合作一次,则=

。参考答案:12.设O为坐标原点,抛物线y2=4x的焦点为F,P为抛物线上一点.若|PF|=3,则△OPF的面积为.参考答案:【考点】抛物线的简单性质.【分析】根据抛物线方程求得抛物线的准线方程与焦点坐标,利用|PF|=3求得P点的横坐标,代入抛物线方程求得纵坐标,代入三角形面积公式计算.【解答】解:由抛物线方程得:抛物线的准线方程为:x=﹣1,焦点F(1,0),又P为C上一点,|PF|=3,∴xP=2,代入抛物线方程得:|yP|=2,∴S△POF=×|OF|×2=.故答案为:.【点评】本题考查了抛物线的定义及几何性质,熟练掌握抛物线上的点所迷住的条件是解题的关键.13.已知圆O:x2+y2=r2(r>0)与直线3x﹣4y+20=0相切,则r=

.参考答案:4【考点】圆的切线方程.【分析】由圆的方程求出圆心坐标,直接用圆心到直线的距离等于半径求得答案.【解答】解:由x2+y2=r2,可知圆心坐标为(0,0),半径为r,∵圆O:x2+y2=r2(r>0)与直线3x﹣4y+20=0相切,由圆心到直线的距离d==4,可得圆的半径为4.故答案为:4.14.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是

.参考答案:1和3【考点】F4:进行简单的合情推理.【分析】可先根据丙的说法推出丙的卡片上写着1和2,或1和3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.【解答】解:根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;∴根据甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又甲说,“我与乙的卡片上相同的数字不是2”;∴甲的卡片上写的数字不是1和2,这与已知矛盾;∴甲的卡片上的数字是1和3.故答案为:1和3.15.函数的值域为

.参考答案:

16.曲线在点处的切线与轴、直线所围成的三角形的面积为

.参考答案:2略17.如图,为半圆的直径,为以为直径的半圆的圆心,⊙O的弦切⊙A于点,则⊙A的半径为__________

参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知双曲线C:﹣y2=1,P是C上的任意点.(1)求证:点P到双曲线C的两条渐近线的距离的乘积是一个常数;(2)设点A的坐标为(5,0),求|PA|的最小值.参考答案:【考点】KC:双曲线的简单性质;IR:两点间的距离公式.【分析】(1)设P(x0,y0),由点到直线距离公式,得P到两准线的距离之积满足,再结合点P坐标满足双曲线方程,代入化简整理即可得到,命题得证.(2)由两点的距离公式结合点P坐标满足双曲线方程,化简整理得|PA|2=,再根据二次函数的图象与性质,即可求出|PA|的最小值.【解答】解:(1)设P(x0,y0),P到两准线的距离记为d1,d2∵两准线为x﹣2y=0,x+2y=0…..2'∴…..4’又∵点P在曲线C上,∴=,得(常数)即点P到双曲线C的两条渐近线的距离的乘积是一个常数….6’(2)设P(x0,y0),由平面内两点距离公式得|PA|2=…8’∵,可得=∴|PA|2==…..9’又∵点P在双曲线上,满足|x0|≥2,∴当x0=4时,|PA|有最小值,|PA|min=2….12’【点评】本题在双曲线中,证明动点到两条渐近线的距离之积为常数并求距离最小值,着重考查了两点间的距离公式、点到直线的距离公式和双曲线的简单性质等知识,属于中档题.19.设函数定义在上,,导函数(Ⅰ)求的单调区间和最小值;(Ⅱ)求在上的最大值。参考答案:由条件

3分

4分

6分令

得到增区间为(

8分令

得到减区间为(

10分=-

12分当时,的最大值为

当时,的最大值为=a-1当时,的最大值为=

16分略20.如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,AC=BC,D、E、F分别为棱AB,BC,A1C1的中点.(1)证明:EF∥平面A1CD;(2)证明:平面A1CD⊥平面ABB1A1.参考答案:【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)根据线面平行的判定定理证明EF∥A1D即可证明EF∥平面A1CD;(2)根据面面垂直的判定定理即可证明平面A1CD⊥平面ABB1A1.【解答】证明:(1)连结DE,∵D,E分别是AB,BC的中点∴DE∥AC,DE=AC,∵F为棱A1C1的中点.∴A1F=A1C1,∴A1F∥AC,即DE∥A1F,DE=A1F,∴四边形A1DEF为平行四边形,∴A1D∥EF又∵EF?平面A1CD,A1D?平面A1CD,∴EF∥平面A1CD.(2)∵A1A⊥平面ABC,CD?平面ABC,∴AA1⊥CD,∵AC=BC,D为AB的中点,∴AB⊥CD,∵A1A∩AB=A∴CD⊥平面ABB1A1∵CD?平面A1CD,∴平面A1CD⊥平面ABB1A1.21.(本题12分)若点,在中按均匀分布出现.(1)点横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点落在上述区域的概率?(2)试求方程有两个实数根的概率.

参考答案:略22.如图,四核锥P-ABCD中,,是以AD为底的等腰直角三角形,,E为BC中点,且.(Ⅰ)求证:平面PAD⊥平面ABCD;(Ⅱ)求直线PE与平面PAB所成角的正弦值.参考答案:(Ⅰ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论