天津河西区津海中学2021年高一数学理联考试题含解析_第1页
天津河西区津海中学2021年高一数学理联考试题含解析_第2页
天津河西区津海中学2021年高一数学理联考试题含解析_第3页
天津河西区津海中学2021年高一数学理联考试题含解析_第4页
天津河西区津海中学2021年高一数学理联考试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津河西区津海中学2021年高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数

,那么的值为()A.

27

B.

C.

D.参考答案:D略2.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7

B.

8

C.

9

D.10参考答案:C3.连续抛掷一枚硬币3次,则至少有一次正面向上的概率是 A. B. C. D.参考答案:B连续抛掷一枚硬币3次的结果为有限个,属于古典概型.全部结果是(正,正,正)、(正,正,反)、(正,反,正)、(正,反,反)、(反,正,正)、(反,正,反)、(反,反,正)、(反,反,反),共种情况,三次都是反面的结果仅有(反,反,反)种情况,所以至少有一次正面向上的概率是.4.函数y=|lg(x+1)|的图象是()A. B. C. D.参考答案:A【考点】对数函数的图像与性质.【专题】数形结合.【分析】本题研究一个对数型函数的图象特征,函数y=|lg(x+1)|的图象可由函数y=lg(x+1)的图象将X轴下方的部分翻折到X轴上部而得到,故首先要研究清楚函数y=lg(x+1)的图象,由图象特征选出正确选项【解答】解:由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与X轴的交点是(1,0),故函数y=lg(x+1)的图象与X轴的交点是(0,0),即函数y=|lg(x+1)|的图象与X轴的公共点是(0,0),考察四个选项中的图象只有A选项符合题意故选A【点评】本题考查对数函数的图象与性质,解答本题关键是掌握住对数型函数的图象图象的变化规律,由这些规律得出函数y=|lg(x+1)|的图象的特征,再由这些特征判断出函数图象应该是四个选项中的那一个5.已知,i是虚数单位,若,则的值为(

)A.1 B. C. D.参考答案:D【分析】根据复数的运算性质,分别求出m,n,然后求解复数的模.【详解】故选D【点睛】本题考查复数运算性质和复数模的计算,属于基础题,解题时要准确计算.6.已知全集,则图中阴影部分所表示的集

合等于(

A.

B.

C.

D.参考答案:A试题分析:因,则,故应选A.考点:不等式的解法与集合的运算.7.已知函数,,当时,实数满足的取值范围是(

)A.

B.

C.

D.参考答案:B8.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6,7},B={1,2,3,4,6,7},则A∩?UB=()A.{3,6} B.{5} C.{2,4} D.{2,5}参考答案:B【考点】交、并、补集的混合运算.【分析】根据集合的基本运算进行求解即可.【解答】解:∵U={1,2,3,4,5,6,7},集合A={1,3,5,6,7},B={1,2,3,4,6,7},∴?UB={5},则A∩?UB={5},故选:B【点评】本题主要考查集合的基本运算,根据集合交集和补集的定义是解决本题的关键.9.若变量x,y满足约束条件,则的最大值是(

)A.5

B.4

C.1

D.-5参考答案:B画出不等式组表示的可行域如图阴影部分所示.

由,得,故,∴.故选B.

10.函数f(x)=的图象是()A. B. C. D.参考答案:C【考点】函数的图象.【专题】函数思想;数形结合法;函数的性质及应用.【分析】根据函数的定义域,特殊值,结合选项可选出答案.【解答】解:由函数式子有意义可知x≠±1,排除A;∵f(0)=1,排除D;∵当x>1时,|1﹣x2|>0,1﹣|x|<0,∴当x>1时,f(x)<0,排除B.故选C.【点评】本题考查了函数图象判断,是基础题.二、填空题:本大题共7小题,每小题4分,共28分11.函数的定义域为D,若满足如下两条件:①在D内是单调函数;②存在,使得在上的值域为,那么就称函数为“囧函数”,若函数是“囧函数”,则的取值范围是_____________.

参考答案:略12.已知,则______________.参考答案:略13.过点且垂直于直线的直线方程为

.参考答案:略14.下面各组函数中为相同函数的是___________.(填上正确的序号)①,

②,③,④,参考答案:③对于①,函数的定义域为,故两函数的定义域不同,不是相同函数。对于②,由于两函数的定义域不同,故不是相同函数。对于③,两函数的定义域、解析式都相同,故是相同函数。对于④,,=,故两函数的解析式不同,故不是相同函数。综上③正确。答案:③.

15.已知函数,则的最小正周期为.参考答案:16.已知的值为

.参考答案:-1解析:等式两边同乘,即17.设函数,.若存在,使得与同时成立,则实数的取值范围是________.参考答案:a>7三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知等差数列满足:,.的前n项和为.(1)求

及;(2)令(),求数列的前n项和.参考答案:略19.已知集合A={x|x是小于8的正整数},B={1,2,3},C={3,4,5,6},求A∩B,A∩C,A∩(B∪C),A∪(B∩C)参考答案:解:因为集合A={x|x是小于8的正整数},B={1,2,3},C={3,4,5,6},所以A∩B={1,2,3},A∩C={3,4,5,6},A∩(B∪C)={1,2,3,4,5,6},A∪(B∩C)={1,2,3,4,5,6,7}略20.已知关于x的不等式的解集为.(1)求a,b的值;(2)当,,且满足时,有恒成立,求k的取值范围.参考答案:(I);(II)【分析】(1)由不等式的解集为或,可得和是方程的两个实数根,得到关于的方程组,求出的值即可;(2)根据(1),,可得,结合基本不等式的性质求出的最小值,得到关于的不等式,解出即可.【详解】(1)解一:因为不等式的解集为或,所以1和b是方程的两个实数根且,所以,解得解二:因为不等式的解集为或,所以1和b是方程的两个实数根且,由1是的根,有,将代入,得或,(2)由(1)知,于是有,故,当时,左式等号成立,依题意必有,即,得,所以k的取值范围为【点睛】本题考查了二次函数和二次不等式的关系,考查利用基本不等式求最值以及转化思想,是一道常规题.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.21.已知函数.(1)那么方程在区间[-2019,2019]上的根的个数是___________.(2)对于下列命题:①函数f(x)是周期函数;②函数f(x)既有最大值又有最小值;③函数f(x)的定义域是R,且其图象有对称轴;④在开区间(1,2)上,f(x)单调递减.其中真命题的序号为______________(填写真命题的序号).参考答案:(1)4039;

(2)②③;【分析】(1)方程在区间上的根,即为在区间上的根.(2)根据函数的周期性的定义、最值、对称性以及单调性判断可得;【详解】解:(1),即,即,,解得,,由于,方程在区间上的根的个数是4039个,(2)①函数是周期函数不正确,因为分母随着自变量的远离原点,趋向于正穷大,所以函数图象无限靠近于轴,故不是周期函数,故①错误;③,,则恒成立;故函数的定义域为,在函数图象上任取点,则点关于直线的对称点是而.直线是函数图象的对称轴;故③正确,②因为有最值,在上单调递增,在上单调递减,所以,从而(当且仅当取等号),所以既有最大值又有最小值;故②正确;④因为函数在与时,,故在开区间上,不可能单调递减.故④错误;故正确的有②③.故答案为:(1)、4039;(2)、②③;【点睛】本题主要考查了函数思想,转化思想,还考查函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论