![2023届河南省禹州市九年级数学第一学期期末达标检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/06b80f0ee514cf372451d7cd70169a2c/06b80f0ee514cf372451d7cd70169a2c1.gif)
![2023届河南省禹州市九年级数学第一学期期末达标检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/06b80f0ee514cf372451d7cd70169a2c/06b80f0ee514cf372451d7cd70169a2c2.gif)
![2023届河南省禹州市九年级数学第一学期期末达标检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/06b80f0ee514cf372451d7cd70169a2c/06b80f0ee514cf372451d7cd70169a2c3.gif)
![2023届河南省禹州市九年级数学第一学期期末达标检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/06b80f0ee514cf372451d7cd70169a2c/06b80f0ee514cf372451d7cd70169a2c4.gif)
![2023届河南省禹州市九年级数学第一学期期末达标检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/06b80f0ee514cf372451d7cd70169a2c/06b80f0ee514cf372451d7cd70169a2c5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,已知在△ABC中,DE∥BC,,DE=2,则BC的长是()A.3 B.4 C.5 D.62.一个不透明的袋子装有除颜色外其余均相同的2个白球和个黑球.随机地从袋中摸出一个球记录下颜色,再放回袋中摇匀.大量重复试验后,发现摸出白球的频率稳定在1.2附近,则的值为()A.2 B.4 C.8 D.113.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃ B.众数是28℃ C.中位数是24℃ D.平均数是26℃4.方程的两根分别是,则等于()A.1 B.-1 C.3 D.-35.下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.6.如图,AD是⊙O的直径,以A为圆心,弦AB为半径画弧交⊙O于点C,连结BC交AD于点E,若DE=3,BC=8,则⊙O的半径长为()A. B.5 C. D.7.二次函数y=ax2+bx+c的图象如图所示,在ab、ac、b2﹣4ac,2a+b,a+b+c,这五个代数式中,其值一定是正数的有()A.1个 B.2个 C.3个 D.4个8.二次函数y=-2(x+1)2+5的顶点坐标是()A.-1 B.5 C.(1,5) D.(-1,5)9.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是()A. B. C. D.10.在函数中,自变量x的取值范围是()A.x>0 B.x≥﹣4 C.x≥﹣4且x≠0 D.x>0且x≠﹣1二、填空题(每小题3分,共24分)11.已知二次函数(),与的部分对应值如下表所示:-10123461-2-3-2下面有四个论断:①抛物线()的顶点为;②;③关于的方程的解为,;④当时,的值为正,其中正确的有_______.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=_____度.13.若抛物线与轴没有交点,则的取值范围是__________.14.在△ABC中,∠B=45°,∠C=75°,AC=2,则BC的值为_____.15.如图,在半径为的圆形铁片上切下一块高为的弓形铁片,则弓形弦的长为__________.16.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有_____千克种子能发芽.17.如图,已知,,,若,,则四边形的面积为______.18.已知正方形的边长为1,为射线上的动点(不与点重合),点关于直线的对称点为,连接,,,.当是等腰三角形时,的值为__________.三、解答题(共66分)19.(10分)如图,点是正方形边.上一点,连接,作于点,于点,连接.(1)求证:;(2)己知,四边形的面积为,求的值.20.(6分)某商场将进价为元的台灯以元售出,平均每月能售出个,调查表明:这种台灯的售价每上涨元,其销售量就减少个.为了实现平均每月元的销售利润,这种台灯的售价应定为多少?这时应进台灯个?如果商场要想每月的销售利润最多,这种台灯的售价又将定为多少?这时应进台灯多个?21.(6分)如图,一次函数的图像与反比例函数(k>0)的图像交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.22.(8分)我市某校准备成立四个活动小组:.声乐,.体育,.舞蹈,.书画,为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查共抽查了名学生,扇形统计图中的值是;(2)请补全条形统计图;(3)喜爱“书画”的学生中有两名男生和两名女生表现特别优秀,现从这4人中随机选取两人参加比赛,请用列表或画树状图的方法求出所选的两人恰好是一名男生和一名女生的概率.23.(8分)如图,在△ABC中,D为BC边上的一点,且AC=,CD=4,BD=2,求证:△ACD∽△BCA.24.(8分)为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?25.(10分)已知抛物线y=ax2+bx+c经过(﹣1,0),(0,﹣3),(2,3)三点.(1)求这条抛物线的表达式;(2)写出抛物线的开口方向、对称轴和顶点坐标.26.(10分)已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.
参考答案一、选择题(每小题3分,共30分)1、D【分析】由DE∥BC可证△ADE∽△ABC,得到,即可求BC的长.【详解】∵DE∥BC,∴△ADE∽△ABC,∴,∵,DE=2,∴BC=1.故选D.【点睛】本题主要考查了相似三角形的判定与性质,解决本题的关键是要熟练掌握相似三角形的判定和性质.2、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:依题意有:=1.2,
解得:n=2.
故选:C.【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.3、B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:℃,故选项D错误,故选B.点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.4、B【分析】根据一元二次方程根与系数的关系,即可得到答案.【详解】解:∵的两根分别是,∴,故选:B.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练掌握一元二次方程根与系数的关系进行解题.5、A【解析】轴对称图形一个图形沿某一直线对折后图形与自身重合的图形;中心对称图形是指一个图形沿某一点旋转180°后图形能与自身重合,只有A图符合题中条件.故应选A.6、A【分析】由作法得,根据圆周角定理得到∠ADB=∠ABE,再根据垂径定理的推论得到AD⊥BC,BE=CE=BC=4,于是可判断Rt△ABE∽Rt△BDE,然后利用相似比求出AE,从而得到圆的直径和半径.【详解】解:由作法得AC=AB,∴,∴∠ADB=∠ABE,∵AB为直径,∴AD⊥BC,∴BE=CE=BC=4,∠BEA=∠BED=90°,而∠BDE=∠ABE,∴Rt△ABE∽Rt△BDE,∴BE:DE=AE:BE,即4:3=AE:4,∴AE=,∴AD=AE+DE=+3=,∴⊙O的半径长为.故选:A.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系.也考查了圆周角定理.7、B【解析】试题分析:根据图象可知:,则;图象与x轴有两个不同的交点,则;函数的对称轴小于1,即,则;根据图象可知:当x=1时,,即;故本题选B.8、D【解析】直接利用顶点式的特点写出顶点坐标.【详解】因为y=2(x+1)2-5是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(-1,5).故选:D.【点睛】主要考查了求抛物线的顶点坐标的方法,熟练掌握顶点式的特点是解题的关键.9、A【解析】观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.10、C【解析】试题分析:由题意,得x+4≥0且x≠0,解得x≥﹣4且x≠0,故选C.考点:函数自变量的取值范围.二、填空题(每小题3分,共24分)11、①③④【分析】根据表格,即可判断出抛物线的对称轴,从而得到顶点坐标,即可判断①;根据抛物线的对称性即可判断②;根据表格中函数值为-2时,对应的x的值,即可判断③;根据二次函数的增减性即可判断④.【详解】解:①根据表格可知:抛物线()的对称轴为x=2,∴抛物线()的顶点为,故①正确;②根据抛物线的对称性可知:当x=4和x=0时,对应的函数值相同,∴m=1,故②错误;③由表格可知:对于二次函数,当y=-2时,对应的x的值为1或3∴关于的方程的解为,,故③正确;④由表格可知:当x<2时,y随x的增大而减小∵,抛物线过(0,1)∴当时,>1>0∴当时,的值为正,故④正确.故答案为:①③④.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的对称性、顶点坐标与最值、二次函数与一元二次方程的关系和二次函数的增减性是解决此题的关键.12、30°【分析】根据旋转的性质得到∠BOD=45°,再用∠BOD减去∠AOB即可.【详解】∵将△AOB绕点O按逆时针方向旋转45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为30°.13、;【分析】利用根的判别式△<0列不等式求解即可.【详解】解:∵抛物线与轴没有交点,∴,即,解得:;故答案为:.【点睛】本题考查了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键.14、【分析】构造直角三角形,利用锐角三角函数及三角形的边角关系求解.【详解】解:如图所示,过点C作CD⊥AB,垂足为D.在Rt△BCD中,∠B=45°,∴∠BCD=45°,∵∠BCA=75°,∴∠ACD=∠ACB﹣∠BCD=30°在Rt△ACD中,∵cos∠ACD=cos30°==,∴CD=AC=,在Rt△ACD中,∵sin∠B=sin45°==∴CB=DC=故答案为.【点睛】本题考查了特殊角的三角函数值及直角三角形的边角间关系,构造直角三角形是解决本题的关键.15、【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【详解】解:如图,过O作OD⊥AB于C,交⊙O于D,
∵CD=4,OD=10,
∴OC=6,
又∵OB=10,
∴Rt△BCO中,BC=∴AB=2BC=1.
故答案是:1.【点睛】此题主要考查了垂径定理以及勾股定理,得出BC的长是解题关键.16、1.1【分析】观察图中的频率稳定在哪个数值附近,由此即可求出作物种子的概率.【详解】解:∵大量重复试验发芽率逐渐稳定在0.11左右,∴10kg种子中能发芽的种子的质量是:10×0.11=1.1(kg)故答案为:1.1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.17、1【分析】过点D作DE⊥AC于E,利用AAS证出ABC≌DAE,从而得出BC=AE,AC=DE,∠BAC=∠ADE,根据锐角三角函数可得,设BC=AE=x,则AC=DE=4x,从而求出CE,利用勾股定理列出方程即可求出x的值,从而求出BC、AC和DE,再根据四边形的面积=即可求出结论.【详解】解:过点D作DE⊥AC于E∴∠EAD+∠ADE=90°∵∴∠BAC+∠EAD=90°∴∠BAC=∠ADE∵∠BCA=∠AED=90°,∴ABC≌DAE∴BC=AE,AC=DE,∠BAC=∠ADE∴∴设BC=AE=x,则AC=DE=4x∴EC=AC-AE=3x在RtCDE中,CE2+DE2=CD2即(3x)2+(4x)2=52解得:x=1或-1(不符合题意舍去)∴BC=1,AC=DE=4∴四边形的面积==BC·AC+AC·DE=×1×4+×4×4=1故答案为:1.【点睛】此题考查的是全等三角形的判定及性质、锐角三角函数和勾股定理,掌握全等三角形的判定及性质、锐角三角函数和勾股定理是解题关键.18、或或【分析】以B为圆心,以AB长为半径画弧,以C为圆心,以CD长为半径画弧,两弧分别交于,此时都是以CD为腰的等腰三角形;作CD的垂直平分线交弧AC于点,此时以CD为底的等腰三角形.然后分别对这三种情况进行讨论即可.【详解】如图,以B为圆心,以AB长为半径画弧,以C为圆心,以CD长为半径画弧,两弧分别交于,此时都是以CD为腰的等腰三角形;作CD的垂直平分线交弧AC于点,此时以CD为底的等腰三角形(1)讨论,如图作辅助线,连接,作交AD于点P,过点,作于Q,交BC于F,为等边三角形,正方形ABCD边长为1在四边形中∴为含30°的直角三角形(2)讨论,如图作辅助线,连接,作交AD于点P,连接BP,过点,作于Q,交AB于F,∵EF垂直平分CD∴EF垂直平分AB为等边三角形在四边形中(3)讨论,如图作辅助线,连接,过作交AD的延长线于点P,连接BP,过点,作于Q,此时在EF上,不妨记与F重合为等边三角形,在四边形中故答案为:或或.【点睛】本题主要考查等腰三角形的定义和解直角三角形,注意分情况讨论是解题的关键.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)首先由正方形的性质得出BA=AD,∠BAD=90°,又由DE⊥AM于点E,BF⊥AM得出∠AFB=90°,∠DEA=90°,∠ABF=∠EAD,然后即可判定△ABF≌△DAE,即可得出BF=AE;(2)首先设AE=x,则BF=x,DE=AF=2,然后将四边形的面积转化为两个三角形的面积之和,列出方程,得出BF,然后利用勾股定理得出BE,即可得解.【详解】(1)证明:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中,∴△ABF≌△DAE(AAS),∴BF=AE;(2)设AE=x,则BF=x,DE=AF=2,∵四边形ABED的面积为24,∴•x•x+•x•2=24,解得x1=6,x2=﹣8(舍去),∴EF=x﹣2=4,在Rt△BEF中,BE==2,∴=.【点睛】此题主要考查正方形的性质以及三角形全等的判定与性质、勾股定理的运用,熟练掌握,即可解题.20、(1)这种台灯的售价应定为元或元,这时应进台灯个或个;商场要想每月的销售利润最多,这种台灯的售价定为元,这时应进台灯个.【分析】(1)设这种台灯的售价应定为x元,根据题意得:利润为(x-30)[600-10(x-40)]=10000;(2)由(1)得:W=(x-30)[600-10(x-40)],进而求出最值即可.【详解】(1)设这种台灯的售价应定为x元,根据题意得:(x-30)[600-10(x-40)]=10000,x2-130x+4000=0,x1=80,x2=50,则600-10(80-40)=200(个),600-10(50-40)=500(个),答:这种台灯的售价应定为元或元,这时应进台灯个或个;根据题意得:设利润为,则,则(个),∴商场要想每月的销售利润最多,这种台灯的售价定为元,这时应进台灯个.21、(1)y=;(2)最小值即为,P(0,).【解析】(1)根据反比例函数比例系数的几何意义得出,进而得到反比例函数的解析式;(2)作点关于轴的对称点,连接,交轴于点,得到最小时,点的位置,根据两点间的距离公式求出最小值的长;利用待定系数法求出直线的解析式,得到它与轴的交点,即点的坐标.【详解】(1)反比例函数的图象过点,过点作轴的垂线,垂足为,面积为1,,,,故反比例函数的解析式为:;(2)作点关于轴的对称点,连接,交轴于点,则最小.由,解得,或,,,,最小值.设直线的解析式为,则,解得,直线的解析式为,时,,点坐标为.【点睛】考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定最小时,点的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.22、(1)50,32;(2)见解析;(3)【解析】(1)根据D组的人数及占比即可求出本次抽样调查共抽查的人数,故可求出m的值;(2)用调查总人数减去各组人数即可求出B组人数,再补全条形统计图;(3)根据题意列出树状图,再根据概率公式即可求解.【详解】解:(1),所以本次抽样调查共抽查了50名学生,,即;故答案为50,32;(2)B组的人数为(人),全条形统计图为:(3)画树状图为:共有12种等可能的结果数,其中所选的两人恰好是一名男生和一名女生的结果数为8,所以所选的两人恰好是一名男生和一名女生的概率.【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的样本容量.23、证明见解析.【分析】根据AC=,CD=4,BD=2,可得,根据∠C=∠C,即可证明结论.【详解】解:∵AC=,CD=4,BD=2∴,∴∵∠C=∠C∴△ACD∽△BCA.【点睛】本题考查了相似三角形的性质和判定,掌握知识点是解题关键.24、该单位这次共有30名员工去风景区旅游【分析】设该单位这次共
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 5 We're family (说课稿)-2024-2025学年外研版(三起)(2024)英语三年级上册
- 1《学习伴我成长》(说课稿)-部编版道德与法治三年级上册
- Unit 2 Different families Part B Let's talk(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2《用水计量时间》说课稿-2024-2025学年科学五年级上册教科版
- 2025产品购销合同样书
- 2023九年级数学下册 第25章 投影与视图25.1 投影第2课时 正投影说课稿 (新版)沪科版001
- 2025城市民用户燃气工程实施合同书范本范文
- 2025妇女发展监测评估项目工程合同管理
- 2025合同模板合伙人利润分配协议范本
- 2024-2025学年高中政治 第3单元 第6课 第1框 源远流长的中华文化说课稿 新人教版必修3001
- 质量问题分析及措施报告
- 汽修厂安全风险分级管控清单
- 现代通信原理与技术(第五版)PPT全套完整教学课件
- 病例展示(皮肤科)
- GB/T 39750-2021光伏发电系统直流电弧保护技术要求
- DB31T 685-2019 养老机构设施与服务要求
- 燕子山风电场项目安全预评价报告
- 高一英语课本必修1各单元重点短语
- 完整版金属学与热处理课件
- T∕CSTM 00640-2022 烤炉用耐高温粉末涂料
- 心脑血管病的危害教学课件
评论
0/150
提交评论