2023届广东省佛山市乐从镇数学九上期末达标测试试题含解析_第1页
2023届广东省佛山市乐从镇数学九上期末达标测试试题含解析_第2页
2023届广东省佛山市乐从镇数学九上期末达标测试试题含解析_第3页
2023届广东省佛山市乐从镇数学九上期末达标测试试题含解析_第4页
2023届广东省佛山市乐从镇数学九上期末达标测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141° B.144° C.147° D.150°2.的值是()A. B. C. D.3.袋子中有4个黑球和3个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机从袋中摸出一个球,摸到白球的概率为()A. B. C. D.4.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=05.在Rt△ABC中,∠C=90°,cosA=,AC=,则BC等于()A. B.1 C.2 D.36.如图,过以为直径的半圆上一点作,交于点,已知,,则的长为()A.7 B.8 C.9 D.107.如图,等腰与等腰是以点为位似中心的位似图形,位似比为,则点的坐标是()A. B. C. D.8.不透明的口袋内装有红球和白球和黄球共20个,这些球除颜色外其它都相同,将口袋内的球充分搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该摸球过程,共摸取2020次球,发现有505次摸到白球,则口袋中白球的个数是()A.5 B.10 C.15 D.209.有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x, y=x2-3A.14B.12C.310.已知二次函数y=﹣2x2﹣4x+1,当﹣3≤x≤2时,则函数值y的最小值为()A.﹣15 B.﹣5 C.1 D.3二、填空题(每小题3分,共24分)11.已知,则的值是_____________.12.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系:h=20t-5t2,当小球达到最高点时,小球的运动时间为第_________秒时.13.如图,在正方形铁皮上剪下一个扇形和一个半径为的圆形,使之恰好围成一个圆锥,则圆锥的高为____.14.关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.15.如图,四边形ABCD是正方形,若对角线BD=4,则BC=_____.16.已知Rt△ABC中,AC=3,BC=4,以C为圆心,以r为半径作圆.若此圆与线段AB只有一个交点,则r的取值范围为_____.17.在中,,,,则的长是__________.18.如图,已知直线y=mx与双曲线y=一个交点坐标为(3,4),则它们的另一个交点坐标是_____.三、解答题(共66分)19.(10分)在平面直角坐标系中,已知抛物线y=x2+kx+c的图象经过点C(0,1),当x=2时,函数有最小值.(1)求抛物线的解析式;(2)直线l⊥y轴,垂足坐标为(0,﹣1),抛物线的对称轴与直线l交于点A.在x轴上有一点B,且AB=,试在直线l上求异于点A的一点Q,使点Q在△ABC的外接圆上;(3)点P(a,b)为抛物线上一动点,点M为坐标系中一定点,若点P到直线l的距离始终等于线段PM的长,求定点M的坐标.20.(6分)如图,已知点C(0,3),抛物线的顶点为A(2,0),与y轴交于点B(0,1),F在抛物线的对称轴上,且纵坐标为1.点P是抛物线上的一个动点,过点P作PM⊥x轴于点M,交直线CF于点H,设点P的横坐标为m.(1)求抛物线的解析式;(2)若点P在直线CF下方的抛物线上,用含m的代数式表示线段PH的长,并求出线段PH的最大值及此时点P的坐标;(3)当PF﹣PM=1时,若将“使△PCF面积为2”的点P记作“巧点”,则存在多个“巧点”,且使△PCF的周长最小的点P也是一个“巧点”,请直接写出所有“巧点”的个数,并求出△PCF的周长最小时“巧点”的坐标.21.(6分)计算:(1)(2)22.(8分)一个盒子里有标号分别为1,2,3,4的四个球,这些球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的球的概率;(2)甲、乙两人用这四个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.23.(8分)(1)如图1,在中,点在边上,且,,求的度数;(2)如图2,在菱形中,,请设计三种不同的分法(只要有一条分割线段不同就视为不同分法),将菱形分割成四个三角形,使得每个三角形都是等腰三角形(不要求写画法,要求画出分割线段,标出所得三角形内角的度数).24.(8分)如图,四边形为正方形,点的坐标为,点的坐标为,反比例函数的图象经过点.(1)的线段长为;点的坐标为;(2)求反比例函数的解析式:(3)若点是反比例函数图象上的一点,的面积恰好等于正方形的面积,求点的坐标.25.(10分)某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?26.(10分)在一个不透明的袋子中,装有除颜色外都完全相同的4个红球和若干个黄球.如果从袋中任意摸出一个球是红球的概率为,那么袋中有黄球多少个?在的条件下如果从袋中摸出一个球记下颜色后放回,再摸出一个球,用列表或画树状图的方法求出两次摸出不同颜色球的概率.

参考答案一、选择题(每小题3分,共30分)1、B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.【详解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故选B.【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180(n≥3)且n为整数).2、D【解析】根据负整数指数幂的运算法则进行求解即可.【详解】=,故选D.【点睛】本题考查了负整数指数幂,熟练掌握(a≠0,p为正整数)是解题的关键.3、A【分析】根据题意,让白球的个数除以球的总数即为摸到白球的概率.【详解】解:根据题意,袋子中有4个黑球和3个白球,∴摸到白球的概率为:;故选:A.【点睛】本题考查了概率的基本计算,摸到白球的概率是白球数比总的球数.4、B【解析】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.5、B【分析】根据余弦函数的定义、勾股定理,即可直接求解.【详解】解:∵在Rt△ABC中,∠C=90°,cosA=,AC=,∴,即,,∴=1,

故选:B.【点睛】本题考查了解直角三角形,解题的基础是掌握余弦函数的定义和勾股定理.6、B【分析】根据条件得出,解直角三角形求出BD,根据勾股定理求出CD,代入,即可求出AC的长.【详解】∵AB为直径,

∴,

∵CD⊥AB,

∴,

∴,

∴,

∵,BC=6,

∴,∴,∴,∵,∴,∴.

故选:B.【点睛】本题考查了圆周角定理,勾股定理,解直角三角形的应用,能够正确解直角三角形是解此题的关键.7、A【分析】根据位似比为,可得,从而得:CE=DE=12,进而求得OC=6,即可求解.【详解】∵等腰与等腰是以点为位似中心的位似图形,位似比为,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴点的坐标是:.故选A.【点睛】本题主要考查位似图形的性质,掌握位似图形的位似比等于相似比,是解题的关键.8、A【分析】估计利用频率估计概率可估计摸到白球的概率为0.25,然后根据概率公式计算这个口袋中白球的数量.【详解】设白球有x个,根据题意得:,解得:x=5,

即白球有5个,

故选A.【点睛】考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.9、C【解析】分析:从四张卡片中,抽出y随x的增大而增大的有y=2x, ∵四张卡片中,抽出y随x的增大而增大的有y=2x, ∴取出的卡片上的函数是y随x的增大而增大的概率是3410、A【分析】先将题目中的函数解析式化为顶点式,然后在根据二次函数的性质和x的取值范围,即可解答本题.【详解】∵二次函数y=﹣2x2﹣4x+1=﹣2(x+1)2+3,∴该函数的对称轴是直线x=﹣1,开口向下,∴当﹣3≤x≤2时,x=2时,该函数取得最小值,此时y=﹣15,故选:A.【点睛】本题考查二次函数的最值,解题的关键是将二次函数的一般式利用配方法化成顶点式,求最值时要注意自变量的取值范围.二、填空题(每小题3分,共24分)11、【分析】设a=3k,则b=4k,代入计算即可.【详解】设a=3k,则b=4k,∴.故答案为:.【点睛】本题考查了比例的性质.熟练掌握k值法是解答本题的关键.12、1【解析】h=10t-5t1=-5(t-1)1+10,∵-5<0,∴函数有最大值,则当t=1时,球的高度最高.故答案为1.13、【分析】利用已知得出底面圆的半径为,周长为,进而得出母线长,再利用勾股定理进行计算即可得出答案.【详解】解:∵半径为的圆形∴底面圆的半径为∴底面圆的周长为∴扇形的弧长为∴,即圆锥的母线长为∴圆锥的高为.故答案是:【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.14、【分析】方程有两个不相等的实数根,则>2,由此建立关于k的不等式,然后可以求出k的取值范围.【详解】解:由题意知,=36-36k>2,

解得k<1.

故答案为:k<1.【点睛】本题考查了一元二次方程根的情况与判别式的关系:(1)>2⇔方程有两个不相等的实数根;(2)=2⇔方程有两个相等的实数根;(3)<2⇔方程没有实数根.同时注意一元二次方程的二次项系数不为2.15、【分析】由正方形的性质得出△BCD是等腰直角三角形,得出BD=BC=4,即可得出答案.【详解】∵四边形ABCD是正方形,∴CD=BC,∠C=90°,∴△BCD是等腰直角三角形,∴BD=BC=4,∴BC=2,故答案为:2.【点睛】本题考查了正方形的性质以及等腰直角三角形的判定与性质;证明△BCD是等腰直角三角形是解题的关键.16、3<r≤1或r=.【解析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.【详解】解:过点C作CD⊥AB于点D,∵AC=3,BC=1.∴AB=5,如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,∴CD×AB=AC×BC,∴CD=r=,当直线与圆如图所示也可以有一个交点,∴3<r≤1,故答案为3<r≤1或r=.【点睛】此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.17、1【分析】根据∠A的余弦值列出比例式即可求出AC的长.【详解】解:在Rt△ABC中,,∴AC=故答案为1.【点睛】此题考查是已知一个角的余弦值,求直角三角形的边长,掌握余弦的定义是解决此题的关键.18、(﹣3,﹣4)【分析】根据反比例函数与正比例函数的中心对称性解答即可.【详解】解:因为直线y=mx过原点,双曲线y=的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(3,4),则另一个交点的坐标为(﹣3,﹣4).故答案是:(﹣3,﹣4).【点睛】本题考查了反比例函数和正比例函数的性质,通过数形结合和中心对称的定义很容易解决.反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.三、解答题(共66分)19、(1)y=x2﹣x+1;(2)Q(1,﹣1);(3)M(2,1)【分析】(1)由已知可求抛物线解析式为y=x2﹣x+1;(2)由题意可知A(2,﹣1),设B(t,0),由AB=,所以(t﹣2)2+1=2,求出B(1,0)或B(3,0),当B(1,0)时,A、B、C三点共线,舍去,所以B(3,0),可证明△ABC为直角三角形,BC为外接圆的直径,外接圆的圆心为BC的中点(,),半径为,设Q(x,﹣1),则有(x﹣)2+(+1)2=()2,即可求Q(1,﹣1);(3)设顶点M(m,n),P(a,b)为抛物线上一动点,则有b=a2﹣a+1,因为P到直线l的距离等于PM,所以(m﹣a)2+(n﹣b)2=(b+1)2,可得+(2n﹣2m+2)a+(m2+n2﹣2n﹣3)=0,由a为任意值上述等式均成立,有,可求定点M的坐标.【详解】解:(1)∵图象经过点C(0,1),∴c=1,∵当x=2时,函数有最小值,即对称轴为直线x=2,∴,解得:k=﹣1,∴抛物线解析式为y=x2﹣x+1;(2)由题意可知A(2,﹣1),设B(t,0),∵AB=,∴(t﹣2)2+1=2,∴t=1或t=3,∴B(1,0)或B(3,0),∵B(1,0)时,A、B、C三点共线,舍去,∴B(3,0),∴AC=2,BC=,∴∠BAC=90°,∴△ABC为直角三角形,BC为外接圆的直径,外接圆的圆心为BC的中点(,),半径为,设Q(x,﹣1),则有(x﹣)2+(+1)2=()2,∴x=1或x=2(舍去),∴Q(1,﹣1);(3)设顶点M(m,n),∵P(a,b)为抛物线上一动点,∴b=a2﹣a+1,∵P到直线l的距离等于PM,∴(m﹣a)2+(n﹣b)2=(b+1)2,∴+(2n﹣2m+2)a+(m2+n2﹣2n﹣3)=0,∵a为任意值上述等式均成立,∴,∴,此时m2+n2﹣2n﹣3=0,∴定点M(2,1).【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,结合圆的相关知识解题是关键.20、(1)y=(x﹣2)2,即y=x2﹣x+1;(2)m=0时,PH的值最大最大值为2,P(0,2);(3)△PCF的巧点有3个,△PCF的周长最小时,“巧点”的坐标为(0,1).【解析】(1)设抛物线的解析式为y=a(x﹣2)2,将点B的坐标代入求得a的值即可;(2)求出直线CF的解析式,求出点P、H的坐标,构建二次函数即可解决问题;(3)据三角形的面积公式求得点P到CF的距离,过点C作CG⊥CF,取CG=.则点G的坐标为(﹣1,2)或(1,4),过点G作GH∥FC,设GH的解析式为y=﹣x+b,将点G的坐标代入求得直线GH的解析式,将直线GH的解析式与抛物线的解析式,联立可得到点P的坐标,当PC+PF最小时,△PCF的周长最小,由PF﹣PM=1可得到PC+PF=PC+PM+1,故此当C、P、M在一条直线上时,△PCF的周长最小,然后可求得此时点P的坐标;【详解】解:(1)设抛物线的解析式为y=a(x﹣2)2,将点B的坐标代入得:4a=1,解得a=,∴抛物线的解析式为y=(x﹣2)2,即y=x2﹣x+1.(2)设CF的解析式为y=kx+3,将点F的坐标F(2,1)代入得:2k+3=1,解得k=﹣1,∴直线CF的解析式为y=﹣x+3,由题意P(m,m2﹣m+1),H(m,﹣m+3),∴PH=﹣m2+2,∴m=0时,PH的值最大最大值为2,此时P(0,2).(3)由两点间的距离公式可知:CF=2.设△PCF中,边CF的上的高线长为x.则×2x=2,解得x=.过点C作CG⊥CF,取CG=.则点G的坐标为(﹣1,2).过点G作GH∥FC,设GH的解析式为y=﹣x+b,将点G的坐标代入得:1+b=2,解得b=1,∴直线GH的解析式为y=﹣x+1,与y=(x﹣2)2联立解得:,所以△PCF的一个巧点的坐标为(0,1).显然,直线GH在CF的另一侧时,直线GH与抛物线有两个交点.∵FC为定点,∴CF的长度不变,∴当PC+PF最小时,△PCF的周长最小.∵PF﹣PM=1,∴PC+PF=PC+PM+1,∴当C、P、M在一条直线上时,△PCF的周长最小.∴此时P(0,1).综上所述,△PCF的巧点有3个,△PCF的周长最小时,“巧点”的坐标为(0,1).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、两点间的距离公式、垂线段最短等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建二次函数解决最值问题,学会构建一次函数,利用方程组确定交点坐标,属于中考压轴题.21、(1);(2)【分析】(1)利用因式分解法求解可得;

(2)利用因式分解法求解可得.【详解】(1)解:.或解之:(2)解:将原方程整理为:或,解之:【点睛】本题主要考查解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22、(1);(2)这个游戏对甲、乙两人公平,理由见解析.【解析】(1)根据四个球中奇数的个数,除以总个数得到所求概率即可;

(2)列表得出所有等可能的情况数,找出两次摸出标号数字同为奇数或偶数的情况数,以及一奇一偶的情况数,分别求出两人获胜的概率,比较即可.【详解】(1)∵标号分别为1,2,3,4的四个球中奇数为1,3,共2个,∴P(摸到标号数字为奇数)==(2)列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况数有16中,其中同为偶数或奇数的情况有:(1,1),(3,1),(2,2),(4,2),(1,3)(3,3),(2,4),(4,4),共8种情况;一奇一偶的情况有:(2,1),(4,1),(1,2),(3,2),(2,3),(4,3),(1,4),(3,4),共8种,∴P(甲获胜)=P(乙获胜)==,则这个游戏对甲、乙两人公平.【点睛】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23、(1);(2)详见解析.【分析】(1)设,利用等边对等角,可得,,根据三角形外角的性质可得,再根据等边对等角和三角形的内角和公式即可求出x,从而求出∠B.(2)根据等腰三角形的定义和判定定理画图即可.【详解】证明:(1)设∵∴又∵∴∴又∵∴又∵∴解出:∴(2)根据等腰三角形的定义和判定定理,画出如下图所示,(任选其三即可).【点睛】此题考查的是等腰三角形的性质及判定,掌握等边对等角、等角对等边和方程思想是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论