2025届江西省赣州市宁都县宁师中学数学高二上期末综合测试试题含解析_第1页
2025届江西省赣州市宁都县宁师中学数学高二上期末综合测试试题含解析_第2页
2025届江西省赣州市宁都县宁师中学数学高二上期末综合测试试题含解析_第3页
2025届江西省赣州市宁都县宁师中学数学高二上期末综合测试试题含解析_第4页
2025届江西省赣州市宁都县宁师中学数学高二上期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省赣州市宁都县宁师中学数学高二上期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在直三棱柱中,,,则直线与所成角的大小为()A.30° B.60°C.120° D.150°2.观察下列各式:,,,,,可以得出的一般结论是A.B.C.D.3.在正方体中,与直线和都垂直,则直线与的关系是()A.异面 B.平行C.垂直不相交 D.垂直且相交4.圆关于直线l:对称的圆的方程为()A. B.C. D.5.如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A. B.C. D.6.已知椭圆的两焦点分别为,,P为椭圆上一点,且,则的面积等于()A.6 B.C. D.7.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次渐多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次从高变低)5个人共出100钱,按照爵位从高到低每人所出钱数成等差数列,问这5个人各出多少钱?”在这个问题中,若公士出28钱,则不更出的钱数为()A.14 B.20C.18 D.168.在中,角,,所对的边分别为,,,若,则的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不确定9.下列结论正确的个数为()①若,则;②若,则;③若,则;④若,则A.4 B.3C.2 D.110.数列满足,,,则数列的前8项和为()A.25 B.26C.27 D.2811.双曲线型自然通风塔外形是双曲线的一部分绕其虚轴旋转所成的曲面,如图所示,它的最小半径为米,上口半径为米,下口半径为米,高为24米,则该双曲线的离心率为()A.2 B.C. D.12.平面的法向量为,平面的法向量为,则下列命题正确的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直二、填空题:本题共4小题,每小题5分,共20分。13.过抛物线:的焦点的直线交于,两点,若,则线段中点的横坐标为______14.若等比数列满足,则的前n项和____________15.已知数列满足,,则使得成立的n的最小值为__________.16.抛物线的焦点坐标为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个长方体的平面展开图及该长方体的直观图的示意图如图所示(1)请将字母F,G,H标记在长方体相应的顶点处(不需说明理由):(2)若且有下面两个条件:①;②,请选择其中一个条件,使得DF⊥平面,并证明你的结论18.(12分)在平面直角坐标系内,椭圆E:过点,离心率为(1)求E的方程;(2)设直线(k∈R)与椭圆E交于A,B两点,在y轴上是否存在定点M,使得对任意实数k,直线AM,BM的斜率乘积为定值?若存在,求出点M的坐标;若不存在,说明理由19.(12分)如图,四边形是矩形,平面平面,为中点,,,(1)证明:平面平面;(2)求二面角的余弦值20.(12分)已知直线,,,其中与交点为P(1)求过点P且与平行的直线方程;(2)求以点P为圆心,截所得弦长为8的圆的方程21.(12分)已知椭圆的短轴长是2,且离心率为(1)求椭圆E的方程;(2)已知,若直线与椭圆E相交于A,B两点,线段AB的中点为M,是否存在常数,使恒成立,并说明理由22.(10分)求下列不等式的解集:(1);(2)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据三棱柱的特征补全为正方体,则,为直线与所成角,连接,则为等边三角形即可得解.【详解】根据直三棱柱的特征,补全可得如图所示的正方体,易知,为直线与所成角,连接,则为等边三角形,所以,所以直线与所成角的大小为.故选:B2、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以归纳:左边每一个式子均有2n-1项,且第一项为n,则最后一项为3n-2右边均为2n-1的平方故选C点睛:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想)3、B【解析】以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,根据向量垂直的坐标表示求出,再利用向量的坐标运算可得,根据共线定理即可判断.【详解】设正方体的棱长为1.以为坐标原点,所在直线分别为轴,轴,轴建立空间直角坐标系,则.设,则,取.,.故选:B【点睛】本题考查了空间向量垂直的坐标表示、空间向量的坐标表示、空间向量共线定理,属于基础题.4、A【解析】首先求出圆的圆心坐标与半径,再设圆心关于直线对称的点的坐标为,即可得到方程组,求出、,即可得到圆心坐标,从而求出对称圆的方程;【详解】解:圆的圆心为,半径,设圆心关于直线对称的点的坐标为,则,解得,即圆关于直线对称的圆的圆心为,半径,所以对称圆的方程为;故选:A5、D【解析】解:,设F1F2=2c,∵△F2AB是等边三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故选D6、B【解析】根据椭圆定义和余弦定理解得,结合三解形面积公式即可求解【详解】由与是椭圆上一点,∴,两边平方可得,即,由于,,∴根据余弦定理可得,综上可解得,∴的面积等于,故选:B7、D【解析】根据题意,建立等差数列模型,结合等差数列公式求解即可.【详解】解:根据题意,设每人所出钱数成等差数列,公差为,前项和为,则由题可得,解得,所以不更出的钱数为.故选:D.8、C【解析】由正弦定理得出,再由余弦定理得出,从而判断为钝角得出的形状.【详解】因为,所以,所以,所以的形状为钝角三角形.故选:C9、D【解析】根据常数函数的导数为0,可判断①;根据幂函数的求导公式,可判断②;根据指数函数以及对数函数的求导公式,可判断③④.【详解】由得:,故①错误;对于,,故,故②正确;对于,则,故③错误;对于,则,故④错误,故选:D10、C【解析】根据通项公式及求出,从而求出前8项和.【详解】当时,,当时,,当时,,当时,,当时,,当时,,则数列的前8项和为.故选:C11、A【解析】以的中点О为坐标原点,建立平面直角坐标系,设双曲线的方程为,设,,代入双曲线的方程,求得,得到,进而求得双曲线的离心率.【详解】以的中点О为坐标原点,建立如图所示的平面直角坐标系,则,设双曲线的方程为,则,可设,,又由,在双曲线上,所以,解得,,即,所以该双曲线的离心率为.故选:A.第II卷12、B【解析】根据可判断两平面垂直.【详解】因为,所以,所以,垂直.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,作出抛物线的简图,求出抛物线的焦点坐标以及准线方程,分析可得为直角梯形中位线,由抛物线的定义分析可得答案【详解】如图,抛物线的焦点为,准线为,分别过,作准线的垂线,垂足为,,则有过的中点作准线的垂线,垂足为,则为直角梯形中位线,则,即,解得.所以的横坐标为故答案为:14、##【解析】由已知及等比数列的通项公式得到首项和公比,再利用前n项和公式计算即可.【详解】设等比数列的公比为,由已知,得,解得,所以.故答案为:15、11【解析】由题设可得,结合等比数列的定义知从第二项开始是公比为2的等比数列,进而写出的通项公式,即可求使成立的最小值n.【详解】因为,所以,两式相除得,整理得.因为,故从第二项开始是等比数列,且公比为2,因为,则,所以,则,由得:,故故答案为:11.16、【解析】根据抛物线方程求得p,则根据抛物线性质可求得抛物线的焦点坐标.解:抛物线方程中p=2,∴抛物线焦点坐标为(-1,0)故填写考点:抛物线的简单性质点评:本题主要考查了抛物线的简单性质.属基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)答案见解析【解析】(1)由展开图及直观图直接观察可得;(2)选择②,根据线面垂直的判定定理即可证明DF⊥平面.【小问1详解】如图,【小问2详解】若选择①,若此时有平面,则由平面可得,而平面,而平面,故,因为,则平面,由平面可得,故此时矩形为正方形,,矛盾.选择条件②,使得平面,下面证明如图,连接,在长方体中,平面,而平面,故,而,故矩形为正方形,故,而,故平面,而平面,故,同理,又,所以平面.18、(1)(2)存在,或者【解析】(1)由离心率和椭圆经过的点列出方程组,求出,得到椭圆方程;(2)假设存在,设出直线,联立椭圆,利用韦达定理得到两根之和,两根之积,结合斜率乘积为定值得到关于的方程,求出答案.【小问1详解】由题可得,,①由,得,即,则,②将②代入①,解得,,故E的方程为【小问2详解】设存在点满足条件记,由消去y,得.显然,判别式>0,所以,,于是===上式为定值,当且仅当,解得或此时,或所以,存在定点或者满足条件19、(1)证明见解析;(2)【解析】(1)利用面面垂直的性质,证得平面,进而可得,平面即可得证;(2)在平面ABC内过点A作Ax⊥AB,以A为原点建立空间直角坐标系,借助空间向量而得解.【详解】(1)因为,为中点,所以,因为是矩形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面ABC内过点A作Ax⊥AB,由(1)知,平面,故以点A为坐标原点,分别以,,的方向为轴,轴,轴的正方向,建立空间直角坐标系,如图:则,,,,,则,所以,,,,由(1)知,为平面的一个法向量,设平面的法向量为,则,即,令,则,,所以,所以,因为二面角为锐角,则二面角的余弦值为.【点睛】思路点睛:二面角大小求解时要注意结合实际图形判断所求角是锐角还是钝角20、(1);(2).【解析】(1)首先求、的交点坐标,根据的斜率,应用点斜式写出过P且与平行的直线方程;(2)根据弦心距、弦长、半径的关系求圆的半径,结合P的坐标写出圆的方程.【小问1详解】联立、得:,可得,故,又的斜率为,则过P且与平行的直线方程,∴所求直线方程为.【小问2详解】由(1),P到的距离,∴以P为圆心,截所得弦长为8的圆的半径,∴所求圆的方程为.21、(1);(2)存在,理由见解析.【解析】(1)利用离心率,短轴长求出a,b,即可求得椭圆方程.(2)联立直线与椭圆方程,利用韦达定理计算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论