版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,2) D.(﹣1,2)2.下列关于x的一元二次方程,有两个不相等的实数根的方程的是()A.x2+1=0 B.x2+2x+1=0 C.x2+2x+3=0 D.x2+2x-3=03.下列事件是必然事件的()A.抛掷一枚硬币,四次中有两次正面朝上B.打开电视体育频道,正在播放NBA球赛C.射击运动员射击一次,命中十环D.若a是实数,则|a|≥04.如图,点A是以BC为直径的半圆的中点,连接AB,点D是直径BC上一点,连接AD,分别过点B、点C向AD作垂线,垂足为E和F,其中,EF=2,CF=6,BE=8,则AB的长是()A.4 B.6 C.8 D.105.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.两个相似多边形的面积之比是1:4,则这两个相似多边形的周长之比是()A.1:2 B.1:4 C.1:8 D.1:167.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,,点,可在槽中滑动,若,则的度数是()A.60° B.65° C.75° D.80°8.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件 B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件 D.事件①和②都是必然事件9.如图,四点在⊙上,.则的度数为()A. B. C. D.10.如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为()A.2 B. C.4 D.611.如图,已知AD∥BE∥CF,那么下列结论不成立的是()A. B. C. D.12.如图,点在以为直径的半圆上,点为圆心,,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.是关于的一元二次方程的一个根,则___________14.点(﹣1,)、(2,)是直线上的两点,则(填“>”或“=”或“<”)15.如图,PA、PB是⊙O的两条切线,点A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB=___°.16.再读教材:如图,钢球从斜面顶端静止开始沿斜面滚下,速度每秒增加1.5m/s,在这个问题中,距离=平均速度时间t,,其中是开始时的速度,是t秒时的速度.如果斜面的长是18m,钢球从斜面顶端滚到底端的时间为________s.17.已知△ABC中,AB=5,sinB=,AC=4,则BC=_____.18.在平面直角坐标系中,和是以坐标原点为位似中心的位似图形,且点.若点,则的坐标为__________.三、解答题(共78分)19.(8分)某网点尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)销售单价m(元/件)(1)请计算第几天该商品单价为25元/件?(2)求网店第几天销售额为792元?(3)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;这30天中第几天获得的利润最大?最大利润是多少?20.(8分)为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有3个不同的操作实验题目,物理题目用序号①、②、③表示,化学题目用字母a、b、c表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.(1)小李同学抽到物理实验题目①这是一个事件(填“必然”、“不可能”或“随机”).(2)小张同学对物理的①、②和化学的c号实验准备得较好,请用画树形图(或列表)的方法,求他同时抽到两科都准备得较好的实验题目的概率.21.(8分)若直线与双曲线的交点为,求的值.22.(10分)如图,矩形ABCD的四个顶点在正三角形EFG的边上.已知△EFG的边长为2,设边长AB为x,矩形ABCD的面积为S.求:(1)S关于x的函数表达式和自变量x的取值范围.(2)S的最大值及此时x的值.23.(10分)为进一步发展基础教育,自年以来,某县加大了教育经费的投入,年该县投入教育经费万元.年投入教育经费万元.假设该县这两年投入教育经费的年平均增长率相同.求这两年该县投入教育经费的年平均增长率.24.(10分)如图,已知直线l切⊙O于点A,B为⊙O上一点,过点B作BC⊥l,垂足为点C,连接AB、OB.(1)求证:∠ABC=∠ABO;(2)若AB=,AC=1,求⊙O的半径.25.(12分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”活动.经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,最终没有学生得分低于25分,也没有学生得满分.根据测试成绩绘制出频数分布表和频数分布直方图(如图).请结合图标完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若本次决赛的前5名是3名女生A、B、C和2名男生M、N,若从3名女生和2名男生中分别抽取1人参加市里的比赛,试用列表法或画树状图的方法求出恰好抽到女生A和男生M的概率.26.如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.
参考答案一、选择题(每题4分,共48分)1、C【分析】把抛物线解析式化为顶点式可求得答案.【详解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴顶点坐标为(1,2),故选:C.【点睛】本题考查了抛物线的顶点坐标的求解,解题的关键是熟悉配方法.2、D【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.3、D.【解析】试题解析:A、是随机事件,不符合题意;B、是随机事件,不符合题意;==C、是随机事件,不符合题意;D、是必然事件,符合题意.故选D.考点:随机事件.4、D【分析】延长BE交于点M,连接CM,AC,依据直径所对的圆周角是90度,及等弧对等弦,得到直角三角形BMC和等腰直角三角形BAC,依据等腰直角三角形三边关系,知道要求AB只要求直径BC,直径BC可以在直角三角形BMC中运用勾股定理求,只需要求出BM和CM,依据三个内角是直角的四边形是矩形,可以得到四边形EFCM是矩形,从而得到CM和EM的长度,再用BE+EM即得BM,此题得解.【详解】解:延长BE交于点M,连接CM,AC,∵BC为直径,∴,又∵由得:,∴四边形EFCM是矩形,∴MC=EF=2,EM=CF=6又∵BE=8,∴BM=BE+EM=8+6=14,∴,∵点A是以BC为直径的半圆的中点,∴AB=AC,又∵,∴,∴AB=10.故选:D.【点睛】本题考查了圆周角定理的推理——直径所对的圆周角是90度,矩形的判定与性质,勾股定理,解题的关键是构造两个直角三角形,将已知和待求用勾股定理建立等式.5、D【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣=﹣a﹣,纵坐标为:y==﹣2a﹣,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.6、A【解析】分析:根据相似多边形的面积之比等于相似比的平方,周长之比等于相似比可得.解:∵两个相似多边形面积比为1:4,∴周长之比为=1:1.故选B.点睛:相似多边形的性质,相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.7、D【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC据三角形的外角性质即可求出∠ODC数,进而求出∠CDE的度数.【详解】∵,∴,,设,∴,∴,∵,∴,即,解得:,.故答案为D.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.8、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、B【分析】连接BO,由可得,则,由圆周角定理,得,即可得到答案.【详解】解:如图,连接BO,则∵,∴,∴,∵,∴;故选:B.【点睛】本题考查了垂径定理,以及圆周角定理,解题的关键是正确作出辅助线,得到.10、A【解析】试题解析:连接CD,交OB于P.则CD就是PD+PA和的最小值.
∵在直角△OCD中,∠COD=90°,OD=2,OC=6,
∴CD=,
∴PD+PA=PD+PC=CD=2.
∴PD+PA和的最小值是2.
故选A.11、D【分析】根据平行线分线段成比例定理列出比例式,判断即可.【详解】∵AD∥BE∥CF,∴,成立;,成立,故D错误,成立,故选D.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理,找准对应关系是解题的关键.12、B【分析】首先由圆的性质得出OC=OD,进而得出∠CDO=∠DCO,∠COD=70°,然后由圆周角定理得出∠CAD.【详解】由已知,得OC=OD∴∠CDO=∠DCO=55°∴∠COD=180°-∠CDO-∠DCO=180°-55°-55°=70°∵∠COD为弧CD所对的圆心角,∠CAD为弧CD所对的圆周角∴∠CAD=∠COD=35°故答案为B.【点睛】此题主要考查对圆周角定理的运用,熟练掌握,即可解题.二、填空题(每题4分,共24分)13、-1【分析】将x=-1代入一元二次方程,即可求得c的值.【详解】解:∵x=-1是关于x的一元二次方程的一个根,
∴,∴c=-1,
故答案:-1.【点睛】本题考查了一元二次方程的解的定义,是基础知识比较简单.14、<.【解析】试题分析:∵k=2>0,y将随x的增大而增大,2>﹣1,∴<.故答案为<.考点:一次函数图象上点的坐标特征.15、70°【分析】连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案【详解】解:连接OA、OB,∠ACB=55°,∴∠AOB=110°∵PA、PB是⊙O的两条切线,点A、B为切点,∴∠OAP=∠OBP=90°∵∠APB+∠OAP+∠AOB+∠OBP=360°∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=70°故答案为:70【点睛】本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键16、【分析】根据题意求得钢球到达斜面低端的速度是1.5t.然后由“平均速度时间t”列出关系式,再把s=18代入函数关系式即可求得相应的t的值.【详解】依题意得s=×t=t2,把s=18代入,得18=t2,解得t=,或t=-(舍去).故答案为【点睛】本题考查了一元二次方程的应用,根据实际问题列出二次函数关系式.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.17、4+或4﹣【分析】根据题意画出两个图形,过A作AD⊥BC于D,求出AD长,根据勾股定理求出BD、CD,即可求出BC.【详解】有两种情况:如图1:过A作AD⊥BC于D,∵AB=5,sinB==,∴AD=3,由勾股定理得:BD=4,CD=,∴BC=BD+CD=4+;如图2:同理可得BD=4,CD=,∴BC=BD﹣CD=4﹣.综上所述,BC的长是4+或4﹣.故答案为:4+或4﹣.【点睛】本题考查了解直角三角形的问题,掌握锐角三角函数的定义以及勾股定理是解题的关键.18、【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,根据相似比即可求得位似图形对应点的坐标.【详解】由题意,得和是以坐标原点为位似中心的位似图形,相似比为2则的坐标为,故答案为:.【点睛】此题考查了位似图形与坐标的关系,熟练掌握,即可解题.三、解答题(共78分)19、(1)第10天时该商品的销售单价为25元/件;(2)网店第26天销售额为792元;(3);这30天中第15天获得的利润最大,最大利润是元.【分析】(1)将m=25代入m=20+x,求得x即可;(2)令,解得方程即可;(3)根据“总利润=单件利润×销售量”可得函数解析式,将所得函数解析式配方成顶点式后,根据二次函数的性质即可得.【详解】解:(1)当时,,解得:,所以第10天时该商品的销售单价为25元/件;(2)根据题意,列方程为:,解得(舍去)答:网店第26天销售额为792元.(3);(4),∴当时,y最大=,答:这30天中第15天获得的利润最大,最大利润是元【点睛】本题考查二次函数的应用等知识,解题的关键是学会构建函数,利用二次函数的性质解决问题,属于中考常考题型.20、(1)随机;(2)P(同时抽到两科都准备得较好)=.【分析】(1)根据三种事件的特点,即可确定答案;(2)先画出树状图,即可快速求出所求事件的概率.【详解】解:(1)由题意可知,小李同学抽到物理实验题目①这是一个随机事件,故答案为:随机;(2)树状图如下图所示:则P(同时抽到两科都准备得较好)=.【点睛】本题考查了求概率的列表法与树状图法,弄清题意,画出树状图或正确的列表是解答本题的关键.21、1【分析】根据直线与双曲线有交点可得,变形为,根据一元二次方程根与系数的关系,得出,再化简为,再将的值代入即可得出答案.【详解】解:由题意得:,∴,∴∴=故答案为:1.【点睛】本题考查了一次函数与反比例函数的综合,根据一元二次方程的根与系数的关系得出的值是解题的关键.22、(1);(2)【分析】(1)根据矩形的性质得到,CD=AB,CD∥AB,由平行可以得到△CDE也为正三角形,所以DE=CD=x,DF=2-x.根据等边三角形的性质得到∠F=60°,得AD=,再根据矩形的面积公式即可得到结论;
(2)根据二次函数的性质即可得到结论.【详解】解:四边形ABCD为矩形,∴CD=AB,CD∥AB,又△EFG为正三角形,∴△CDE也为正三角形.∴DE=CD=x,∴DF=2-x.又在正三角形EFG中,可得∠F=60°,∴AD==,∴S=AB·AD=x·=(2)由,∴当x=1时,S取得最大值,最大值为【点睛】本题考查了矩形的性质,等边三角形的性质,全等三角形的判定和性质,二次函数的性质,正确的理解题意是解题的关键.23、该县投入教育经费的年平均增长率为20%【分析】设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;【详解】解:设该县投入教育经费的年平均增长率为x,根据题意得:
6000(1+x)2=8640
解得:x1=0.2=20%,x2=-2.2(不合题意,舍去),经检验,x=20%符合题意,答:该县投入教育经费的年平均增长率为20%;【点睛】此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.24、(1)详见解析;(2)⊙O的半径是.【分析】(1)连接OA,求出OA∥BC,根据平行线的性质和等腰三角形的性质得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根据矩形的性质求出OD=AC=1,根据勾股定理求出BC,根据垂径定理求出BD,再根据勾股定理求出OB即可.【详解】(1)证明:连接OA,∵OB=OA,∴∠OBA=∠OAB,∵AC切⊙O于A,∴OA⊥AC,∵BC⊥AC,∴OA∥BC,∴∠OBA=∠ABC,∴∠ABC=∠ABO;(2)解:过O作OD⊥BC于D,∵OD⊥BC,BC⊥AC,OA⊥AC,∴∠ODC=∠DCA=∠OAC=90°,∴OD=AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年汽车展示中心租赁合同3篇
- 2024年简化版买卖意向合作合同稿版B版
- 2024年演艺活动承办合同:国际音乐节组织
- 健身房门面转让合同协议书
- 科研机构研究人员考核制度
- 2024版冷冻食品冻库租赁与质量安全控制合同3篇
- 2025不动产附负担赠与合同常用版样板
- 2025年房地产买卖合同参考
- 2025专利权转让许可合同
- 2025简单家具买卖合同
- T-SHNA 0004-2023 有创动脉血压监测方法
- 新生儿疼痛评估与管理课件
- 提高学生学习策略的教学方法
- 小学开学第一课《筑梦新起点 一起向未来》课件
- 广东省深圳市2023-2024学年上册七年级历史期末模拟试题(附答案)
- 客服招聘策划方案
- 发掘无限潜能成就最好的自己主题班会课件
- 主动呼吸循环技术方案
- 医院能源管理平台建设方案合集
- 海南洪水影响区域评估报告
- 《北京大学介绍》课件
评论
0/150
提交评论