2022-2023学年广东省云浮市新兴县数学九年级第一学期期末监测试题含解析_第1页
2022-2023学年广东省云浮市新兴县数学九年级第一学期期末监测试题含解析_第2页
2022-2023学年广东省云浮市新兴县数学九年级第一学期期末监测试题含解析_第3页
2022-2023学年广东省云浮市新兴县数学九年级第一学期期末监测试题含解析_第4页
2022-2023学年广东省云浮市新兴县数学九年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一元二次方程x2+x﹣1=0的两根分别为x1,x2,则=()A. B.1 C. D.2.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.3.抛物线的顶点为,与轴交于点,则该抛物线的解析式为()A. B.C. D.4.如图,在中,,,,以点为圆心,的长为半径作弧,交于点,则阴影部分的面积是()A. B. C. D.5.如图图形中,是中心对称图形的是()A. B. C. D.6.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0),则下面的四个结论,其中正确的个数为()①2a+b=0②4a﹣2b+c<0③ac>0④当y>0时,﹣1<x<4A.1个 B.2个 C.3个 D.4个7.一个圆柱和一个正方体按如图所示放置,则其俯视图为()A. B.C. D.8.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.9.下图是用来证明勾股定理的图案被称为“赵爽弦图”,由四个全等的直角三角形和一个小正方形拼成的大正方形,对其对称性表述,正确的是()A.轴对称图形 B.中心对称图形C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形又不是中心对称图形10.下列一元二次方程中有两个不相等的实数根的方程是()A. B.C. D.11.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()A.6个 B.8个 C.9个 D.12个12.下列四对图形中,是相似图形的是()A.任意两个三角形 B.任意两个等腰三角形C.任意两个直角三角形 D.任意两个等边三角形二、填空题(每题4分,共24分)13.如图,ABC是⊙O的内接三角形,AD是△ABC的高,AE是⊙O的直径,且AE=4,若CD=1,AD=3,则AB的长为______.14.在英语句子“Wishyousuccess”(祝你成功)中任选一个字母,这个字母为“s”的概率是.15.已知(a+b)(a+b﹣4)=﹣4,那么(a+b)=_____.16.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出______个.17.如果二次函数的图象如图所示,那么____0.(填“>”,“=”,或“<”).18.(2011•南充)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=_________度.三、解答题(共78分)19.(8分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.20.(8分)如图,AG是∠PAQ的平分线,点E在AQ上,以AE为直径的⊙0交AG于点D,过点D作AP的垂线,垂足为点C,交AQ于点B.(1)求证:直线BC是⊙O的切线;(2)若⊙O的半径为6,AC=2CD,求BD的长21.(8分)如图1,已知中,,,,点、在上,点在外,边、与交于点、,交的延长线于点.(1)求证:;(2)当时,求的长;(3)设,的面积为,①求关于的函数关系式.②如图2,连接、,若的面积是的面积的1.5倍时,求的值.22.(10分)如图,AB是⊙O的直径,点P是AB上一点,且点P是弦CD的中点.(1)依题意画出弦CD,并说明画图的依据;(不写画法,保留画图痕迹)(2)若AP=2,CD=8,求⊙O的半径.23.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外无其它差别,其中红球有个,若从中随机摸出一个,这个球是白球的概率为.(1)求袋子中白球的个数;(2)随机摸出一个球后,不放回,再随机摸出一个球,请结合树状图或列表求两次都摸到相同颜色的小球的概率.24.(10分)如图,点B、D、E在一条直线上,BE交AC于点F,,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BFC.25.(12分)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC=;(1)作⊙O,使它过点A、B、C(要求尺规作图保留作图痕迹);(2)在(1)所作的圆中,求圆心角∠BOC的度数和该圆的半径26.某地为打造宜游环境,对旅游道路进行改造.如图是风景秀美的观景山,从山脚B到山腰D沿斜坡已建成步行道,为方便游客登顶观景,欲从D到A修建电动扶梯,经测量,山高AC=154米,步行道BD=168米,∠DBC=30°,在D处测得山顶A的仰角为45°.求电动扶梯DA的长(结果保留根号).

参考答案一、选择题(每题4分,共48分)1、B【解析】根据根与系数的关系得到x1+x2=-1,x1•x2=-1,然后把进行通分,再利用整体代入的方法进行计算.【详解】根据题意得x1+x2=-1,x1•x2=-1,所以==1,故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.2、C【解析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.3、A【分析】设出抛物线顶点式,然后将点代入求解即可.【详解】解:设抛物线解析式为,将点代入得:,解得:a=1,故该抛物线的解析式为:,故选:A.【点睛】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.4、A【分析】根据直角三角形的性质得到AC=BC=2,∠B=60°,根据扇形和三角形的面积公式即可得到结论.【详解】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,∴AC=BC=2,∠B=60°,∴阴影部分的面积=S△ACB-S扇形BCD=×2×2-=故选:A.【点睛】本题考查了扇形面积的计算,含30°角的直角三角形的性质,正确的识别图形是解题的关键.5、D【分析】根据中心对称图形的概念和识别.【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.故选D.【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.6、B【分析】①函数对称轴为:x=﹣=1,解得:b=﹣2a,即可求解;②x=﹣2时,y=4a﹣2b+c<0,即可求解;③a<0,c>0,故ac<0,即可求解;④当y>0时,﹣1<x<3,即可求解.【详解】点B坐标为(﹣1,0),对称轴为x=1,则点A(3,0),①函数对称轴为:x=﹣=1,解得:b=﹣2a,故①正确,符合题意;②x=﹣2时,y=4a﹣2b+c<0,故②正确,符合题意;③a<0,c>0,故ac<0,故③错误,不符合题意;④当y>0时,﹣1<x<3,故④错误,不符合题意;故选:B.【点睛】本题考查二次函数图像问题,熟悉二次函数图形利用数形结合解题是本题关键.7、D【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:一个圆柱和一个正方体按如图所示放置,则其俯视图为左边是一个圆,右边是一个正方形.故选:D.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.9、B【分析】根据轴对称和中心对称图形的概念判断即可.【详解】“赵爽弦图”是中心对称图形,但不是轴对称图形,故选:B.【点睛】本题主要考查轴对称和中心对称,会判断轴对称图形和中心对称图形是解题的关键.10、B【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【详解】A、△=0,方程有两个相等的实数根;B、△=4+76=80>0,方程有两个不相等的实数根;C、△=-16<0,方程没有实数根;D、△=1-4=-3<0,方程没有实数根.故选:B.11、C【分析】设有x个队参赛,根据题意列出方程即可求出答案即可解决.【详解】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,解得:x=9或x=﹣8(舍去),故选:C.【点睛】本题考查了一元二次方程的应用,解决本题的关键是正确理解题意,找到题意中蕴含的等量关系.12、D【分析】根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,对题中条件一一分析,排除错误答案.【详解】解:A、任意两个三角形,形状不确定,不一定是相似图形,故A错误;B、任意两个等腰三角形,形状不确定,不一定是相似图形,故B错误;C、任意两个直角三角形,直角边的长度不确定,不一定是相似图形,故C错误;D、任意两个等边三角形,形状相同,但大小不一定相同,符合相似形的定义,故D正确;故选:D.【点睛】本题考查的是相似形的识别,关键要联系实际,根据相似图形的定义得出.二、填空题(每题4分,共24分)13、【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,

∴∠ADC=90°,

∴,

∵AE是直径,

∴∠ABE=90°,

∴∠ABE=∠ADC,

∵∠E=∠C,

∴△ABE∽△ADC,

∴,

∴,

∴,

故答案为:.【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.14、【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.15、2【分析】设a+b=t,根据一元二次方程即可求出答案.【详解】解:设a+b=t,原方程化为:t(t﹣4)=﹣4,解得:t=2,即a+b=2,故答案为:2【点睛】本题考查换元法及解一元二次方程,关键在于整体换元,简化方程.16、4【解析】试题分析:如图,能画4个,分别是:以D为圆心,AB为半径画圆;以C为圆心,CA为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形;以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形.因此最多能画出4个考点:作图题.17、<【分析】首先根据开口方向确定a的符号,再依据对称轴的正负和a的符号即可判断b的符号,然后根据与Y轴的交点的纵坐标即可判断c的正负,代入即可判断abc的正负.【详解】解:∵图象开口方向向上,∴a>0.∵图象的对称轴在x轴的负半轴上,∴.

∵a>0,∴b>0.∵图象与Y轴交点在y轴的负半轴上,

∴c<0.∴abc<0.故答案为<.【点睛】本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,此题运用了数形结合思想.18、50【解析】∵PA,PB是⊙O是切线,A,B为切点,∴PA=PB,∠OBP=90°,∵OA=OB,∴∠OBA=∠BAC=25°,∴∠ABP=90°﹣25°=65°,∵PA=PB,∴∠BAP=∠ABP=65°,∴∠P=180°﹣65°﹣65°=50°,故答案为:50°.三、解答题(共78分)19、(1);(2).【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=,故答案为:;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20、(1)证明见详解;(2)8.【分析】(1)根据角平分线的定义和同圆的半径相等可得OD∥AC,证明OD⊥CB,可得结论;(2))在Rt△ACD中,设CD=a,则AC=2a,AD=,证明△ACD∽△ADE,表示a=,由平行线分线段成比例定理得:,代入可得结论.【详解】(1)证明:连接OD,∵AG是∠HAF的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,即,∴,由(1)知:OD∥AC,解得BD=【点睛】本题考查切线的判定、勾股定理、相似三角形的判定与性质,根据相似三角形的性质列方程解决问题是关键.21、(1)证明见解析;(2);(3)①,②.【分析】(1)由圆内接四边形性质得,又,从而可证明;(2)过作于,证明,得,在直角中求出BH的值即可得到结论;(3)①同(2)可得,根据三角形面积公式求解即可;②过作于,则,用含x的代数式表示出的面积,列出方程求解即可.【详解】(1)∵,∴(2)过作于,∵∴∴∴∴∵在直角中,∴∴(3)①由(2)得AH=1,当时,∴②过作于,则,∵,∴,∴,∴,∴∵∴∴解得,经检验,是方程的解.【点睛】本题考查了圆的综合知识、相似三角形的判定与性质等知识,解题的关键是得到,综合性较强,难度较大.22、(1)画图见解析,依据:平分弦(非直径)的直径垂直于弦;(2)⊙O的半径为1.【分析】(1)过P点作AB的垂线即可,作图依据是垂径定理的推论.(2)设⊙O的半径为r,在Rt△OPD中,利用勾股定理构建方程即可解决问题.【详解】(1)过P点作AB的垂线交圆与C、D两点,CD就是所求的弦,如图.依据:平分弦(非直径)的直径垂直于弦;(2)如图,连接OD,∵OA⊥CD于点P,AB是⊙O的直径,∴∠OPD=90°,PD=CD,∵CD=8,∴PD=2.设⊙O的半径为r,则OD=r,OP=OA﹣AP=r﹣2,在Rt△ODP中,∠OPD=90°,∴OD2=OP2+PD2,即r2=(r﹣2)2+22,解得r=1,即⊙O的半径为1.【点睛】本题主要考查了垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.23、(1)袋子中白球有4个;(2)【分析】(1)设白球有

x

个,利用概率公式得方程,解方程即可求解;(2)画树状图展示所有30种等可能的结果数,再找出两次摸到颜色相同的小球的结果数,然后根据概率公式求解.【详解】(1)设袋中白球有x个,由题意得:,解之,得:,经检验,是原方程的解,故袋子中白球有4个;(2)设红球为A、B,白球为,列举出两次摸出小球的所有可能情况有:共有30种等可能的结果,其中,两次摸到相同颜色的小球有14种,故两次摸到相同颜色的小球的概率为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.24、(1)见解析;(2)见解析【分析】(1)由已知先证明∠BAC=∠DAE,继而根据两边对应成比例且夹角相等即可得结论;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【详解】证明:如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论