版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年辽宁省盘锦市成考专升本高等数学一自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.设函数在x=0处连续,则等于()。A.2B.1/2C.1D.-2
2.
3.
A.0B.2C.4D.8
4.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
5.下列说法中不能提高梁的抗弯刚度的是()。
A.增大梁的弯度B.增加梁的支座C.提高梁的强度D.增大单位面积的抗弯截面系数
6.
7.
8.
9.在空间直角坐标系中,方程x2-4(y-1)2=0表示()。A.两个平面B.双曲柱面C.椭圆柱面D.圆柱面
10.
11.A.充分条件B.必要条件C.充要条件D.以上都不对
12.
13.
14.下列函数在指定区间上满足罗尔中值定理条件的是()。A.
B.
C.
D.
15.()。A.sinx+ccosx
B.sinx-xcosx
C.xcosx-sinx
D.-(sinx+xcosx)
16.函数f(x)在点x=x0处连续是f(x)在x0处可导的A.A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分条件也非必要条件
17.
18.设球面方程为(x-1)2+(y+2)2+(z-3)2=4,则该球的球心坐标与半径分别为()A.(-1,2,-3);2B.(-1,2,-3);4C.(1,-2,3);2D.(1,-2,3);4
19.设函数f(x)在[a,b]上连续,在(a,b)可导,f'(x)>0,f(a)f(b)<0,则f(x)在(a,b)内零点的个数为
A.3B.2C.1D.0
20.A.A.
B.
C.
D.
21.
22.
23.设平面π1:2x+y+4z+4=0π1:2x-8y+Z+1=0则平面π1与π2的位置关系是A.A.相交且垂直B.相交但不垂直C.平行但不重合D.重合24.曲线y=x-ex在点(0,-1)处切线的斜率k=A.A.2B.1C.0D.-125.微分方程y+y=0的通解为().A.A.
B.
C.
D.
26.设有直线
当直线l1与l2平行时,λ等于().A.A.1
B.0
C.
D.一1
27.当x→0时,x+x2+x3+x4为x的
A.等价无穷小B.2阶无穷小C.3阶无穷小D.4阶无穷小
28.
29.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)
30.
31.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
32.
33.
A.
B.
C.
D.
34.设y=sinx,则y'|x=0等于().A.1B.0C.-1D.-2
35.
36.过点(1,0,O),(0,1,O),(0,0,1)的平面方程为()A.A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
37.设f(x)为连续函数,则等于()A.A.
B.
C.
D.
38.图示为研磨细砂石所用球磨机的简化示意图,圆筒绕0轴匀速转动时,带动筒内的许多钢球一起运动,当钢球转动到一定角度α=50。40时,它和筒壁脱离沿抛物线下落,借以打击矿石,圆筒的内径d=32m。则获得最大打击时圆筒的转速为()。
A.8.99r/minB.10.67r/minC.17.97r/minD.21.35r/min
39.若级数在x=-1处收敛,则此级数在x=2处
A.发散B.条件收敛C.绝对收敛D.不能确定40.下列反常积分收敛的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
41.已知斜齿轮上A点受到另一齿轮对它作用的捏合力Fn,Fn沿齿廓在接触处的公法线方向,且垂直于过A点的齿面的切面,如图所示,α为压力角,β为斜齿轮的螺旋角。下列关于一些力的计算有误的是()。
A.圆周力FT=Fncosαcosβ
B.径向力Fa=Fncosαcosβ
C.轴向力Fr=Fncosα
D.轴向力Fr=Fnsinα
42.微分方程y''-2y'=x的特解应设为A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+C43.设lnx是f(x)的一个原函数,则f'(x)=()。A.
B.
C.
D.
44.微分方程y'=x的通解为A.A.2x2+C
B.x2+C
C.(1/2)x2+C
D.2x+C
45.函数f(x)=lnz在区间[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
46.A.A.0B.1/2C.1D.247.A.A.
B.
C.
D.
48.设f(x)=x3+x,则等于()。A.0
B.8
C.
D.
49.
50.
二、填空题(20题)51.
52.设y=ex,则dy=_________。
53.设z=xy,则出=_______.
54.
55.
56.
57.设函数z=x2ey,则全微分dz=______.
58.
59.y=lnx,则dy=__________。
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
三、计算题(20题)71.72.求函数f(x)=x3-3x+1的单调区间和极值.73.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.74.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.75.求微分方程的通解.
76.
77.求曲线在点(1,3)处的切线方程.78.证明:
79.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
80.当x一0时f(x)与sin2x是等价无穷小量,则81.82.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
83.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.84.
85.
86.
87.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.88.将f(x)=e-2X展开为x的幂级数.89.
90.求微分方程y"-4y'+4y=e-2x的通解.
四、解答题(10题)91.证明:
92.
93.设存在,求f(x).
94.函数y=y(x)由方程ey=sin(x+y)确定,求dy.
95.
96.设f(x)为连续函数,且97.98.求曲线y=x3-3x+5的拐点.99.100.五、高等数学(0题)101.已知函数f(x)的定义域是[一1,1],则f(x一1)的定义域为()。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]六、解答题(0题)102.(本题满分10分)
参考答案
1.C本题考查的知识点为函数连续性的概念。由于f(x)在点x=0连续,因此,故a=1,应选C。
2.D
3.A解析:
4.C
5.A
6.B
7.D
8.B解析:
9.A
10.B
11.D本题考查了判断函数极限的存在性的知识点.
极限是否存在与函数在该点有无定义无关.
12.C
13.C
14.C
15.A
16.B由可导与连续的关系:“可导必定连续,连续不一定可导”可知,应选B。
17.D解析:
18.C
19.C本题考查了零点存在定理的知识点。由零点存在定理可知,f(x)在(a,b)上必有零点,且函数是单调函数,故其在(a,b)上只有一个零点。
20.D本题考查的知识点为偏导数的计算.
21.B
22.D
23.A平面π1的法线向量n1=(2,1,4),平面π2的法线向量n2=(2,-8,1),n1*n1=0。可知两平面垂直,因此选A。
24.C
25.D本题考查的知识点为-阶微分方程的求解.
可以将方程认作可分离变量方程;也可以将方程认作-阶线性微分方程;还可以仿二阶线性常系数齐次微分方程,并作为特例求解.
解法1将方程认作可分离变量方程.
解法2将方程认作-阶线性微分方程.由通解公式可得
解法3认作二阶常系数线性齐次微分方程特例求解:
特征方程为r+1=0,
特征根为r=-1,
26.C本题考查的知识点为直线间的关系.
27.A本题考查了等价无穷小的知识点。
28.C
29.C
30.B
31.D本题考查的知识点为定积分的性质;牛顿-莱布尼茨公式.
可知应选D.
32.B
33.B本题考查的知识点为交换二次积分次序。由所给二次积分可知积分区域D可以表示为1≤y≤2,y≤x≤2,交换积分次序后,D可以表示为1≤x≤2,1≤y≤x,故应选B。
34.A由于
可知应选A.
35.D
36.A
37.D本题考查的知识点为定积分的性质;牛-莱公式.
可知应选D.
38.C
39.C由题意知,级数收敛半径R≥2,则x=2在收敛域内部,故其为绝对收敛.
40.DA,∫1+∞xdx==∞发散;
41.C
42.C因f(x)=x为一次函数,且特征方程为r2-2r=0,得特征根为r1=0,r2=2.于是特解应设为y*=(Ax+B)x=Ax2+Bx.
43.C
44.C
45.D由拉格朗日定理
46.C本题考查的知识点为函数连续性的概念.
47.B
48.A本题考查的知识点为定积分的对称性质。由于所给定积分的积分区间为对称区间,被积函数f(x)=x3+x为连续的奇函数。由定积分的对称性质可知
可知应选A。
49.B
50.C解析:
51.
52.exdx
53.
54.
55.
56.7
57.dz=2xeydx+x2eydy58.本题考查的知识点为换元积分法.
59.(1/x)dx
60.
61.eyey
解析:
62.tanθ-cotθ+C
63.2
64.65.2.
本题考查的知识点为二阶导数的运算.
66.2xy(x+y)+3
67.(-21)(-2,1)
68.y=f(0)
69.
70.0
71.
72.函数的定义域为
注意
73.
列表:
说明
74.
75.
76.
77.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
78.
79.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%80.由等价无穷小量的定义可知
81.
82.
83.由二重积分物理意义知
84.由一阶线性微分方程通解公式有
85.
则
86.
87.
88.
89.
90.解:原方程对应的齐次方程为y"-4y'+4y=0,
91.
92.
93.本题考查的知识点为两个:极限的运算;极限值是个确定的数值.
设是本题求解的关键.未知函数f(x)在极限号内或f(x)在定积分号内的、以方程形式出现的这类问题,求解的基本思想是一样的.请读者明确并记住这种求解的基本思想.
本题考生中多数人不会计算,感到无从下手.考生应该记住这类题目的解题关键在于明确:
如果存在,则表示一个确定的数值.
94.
95.96.设,则f(x)=x3+3Ax.将上式两端在[0,1]上积分,得
因此
本题考查的知识点为两个:定积分表示一个确定的数值;计算定积分.
由于定积分存在,因此它表示一个确定的数值,设,则
f(x)=x3+3Ax.
这是解题的关键!为了能求出A,可考虑将左端也转化为A的表达式,为此将上式两端在[0,1]上取定积分,可得
得出A的方程,可解出A,从而求得f(x).
本题是考生感到困难的题目,普遍感到无从下手,这是因为不会利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年影视制作进度付款合同2篇
- 模板采购合同
- 工作合同范文
- 2024年度药品研发与临床试验合同2篇
- 活动板房拆除协议书3篇
- 甘肃省陇南市(2024年-2025年小学五年级语文)人教版随堂测试((上下)学期)试卷及答案
- 2024年度钢筋购销与质量检测合同2篇
- 基于2024年度互联网金融风险控制的合同
- 违约方合同解除权问题研究
- 农村土地贷款抵押协议 土地抵押借款借条
- 2024年世界职业院校技能大赛中职组“婴幼儿保育组”赛项考试题库-上(单选题)
- 栏杆喷漆合同范例
- 踝关节不稳的康复治疗
- 产学研合同模板
- 2024-2030年中国云安全服务行业深度调查及投资模式分析报告
- 建筑工程施工现场安全管理处罚规定
- 4.1陆地水体间的相互关系课件高中地理人教版(2019)选择性必修一
- 国开学习网《幼儿园课程与活动设计》期末大作业答案(第3套)
- DB11T 854-2023 占道作业交通安全设施设置技术要求
- 浙教版2024-2025学年七年级数学上册第四章 代数式 单元测试(附答案)
- 6人小品《没有学习的人不伤心》台词完整版
评论
0/150
提交评论