第2章 半导体器件_第1页
第2章 半导体器件_第2页
第2章 半导体器件_第3页
第2章 半导体器件_第4页
第2章 半导体器件_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章半导体器件2.1半导体的基本知识2.2半导体二极管2.3半导体三极管2.1半导体的基本知识

在物理学中。根据材料的导电能力,可以将他们划分导体、绝缘体和半导体。典型的半导体是硅Si和锗Ge,它们都是4价元素。硅原子锗原子硅和锗最外层轨道上的四个电子称为价电子。

本征半导体的共价键结构束缚电子在绝对温度T=0K时,所有的价电子都被共价键紧紧束缚在共价键中,不会成为自由电子,因此本征半导体的导电能力很弱,接近绝缘体。一.本征半导体

本征半导体——化学成分纯净的半导体晶体。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”。

这一现象称为本征激发,也称热激发。

当温度升高或受到光的照射时,束缚电子能量增高,有的电子可以挣脱原子核的束缚,而参与导电,成为自由电子。自由电子+4+4+4+4+4+4+4+4+4空穴

自由电子产生的同时,在其原来的共价键中就出现了一个空位,称为空穴。

可见本征激发同时产生电子空穴对。

外加能量越高(温度越高),产生的电子空穴对越多。

与本征激发相反的现象——复合在一定温度下,本征激发和复合同时进行,达到动态平衡。电子空穴对的浓度一定。常温300K时:电子空穴对的浓度硅:锗:自由电子+4+4+4+4+4+4+4+4+4空穴电子空穴对二.杂质半导体

在本征半导体中掺入某些微量杂质元素后的半导体称为杂质半导体。1.

N型半导体

在本征半导体中掺入五价杂质元素,例如磷,砷等,称为N型半导体。

在本征半导体中掺入三价杂质元素,如硼、镓等。空穴硼原子硅原子多数载流子——空穴少数载流子——自由电子2.

P型半导体N型半导体多余电子磷原子硅原子多数载流子——自由电子少数载流子——空穴内电场E因多子浓度差形成内电场多子的扩散空间电荷区

阻止多子扩散,促使少子漂移。PN结合空间电荷区多子扩散电流少子漂移电流耗尽层三.PN结及其单向导电性

1.PN结的形成

少子飘移补充耗尽层失去的多子,耗尽层窄,E多子扩散

又失去多子,耗尽层宽,E内电场E多子扩散电流少子漂移电流耗尽层势垒(死区)UO硅0.5V锗0.1V2.PN结的单向导电性(1)加正向电压(正偏)——电源正极接P区,负极接N区

外电场的方向与内电场方向相反。

外电场削弱内电场→耗尽层变窄→扩散运动>漂移运动→多子扩散形成正向电流IF正向电流

(2)加反向电压——电源正极接N区,负极接P区

外电场的方向与内电场方向相同。

外电场加强内电场→耗尽层变宽→漂移运动>扩散运动→少子漂移形成反向电流IRPN

在一定的温度下,由本征激发产生的少子浓度是一定的,故IR基本上与外加反压的大小无关,所以称为反向饱和电流。但IR与温度有关。

PN结加正向电压时,具有较大的正向扩散电流,呈现低电阻,PN结导通;

PN结加反向电压时,具有很小的反向漂移电流,呈现高电阻,PN结截止。

由此可以得出结论:PN结具有单向导电性。3.PN结的伏安特性曲线及表达式

根据理论推导,PN结的伏安特性曲线如图正偏IF(多子扩散)IR(少子漂移)反偏反向饱和电流反向击穿电压反向击穿热击穿——烧坏PN结电击穿——可逆2.2半导体二极管

二极管=PN结+管壳+引线NP结构符号阳极+阴极-

二极管按结构分三大类:(1)点接触型二极管

PN结面积小,结电容小,用于检波和变频等高频电路。(3)平面型二极管

用于集成电路制造工艺中。PN结面积可大可小,用于高频整流和开关电路中。(2)面接触型二极管

PN结面积大,用于工频大电流整流电路。

一、半导体二极管的V—A特性曲线

硅:0.5V

锗:

0.1V(1)正向特性导通压降反向饱和电流(2)反向特性死区电压击穿电压UBR实验曲线uEiVmAuEiVuA锗

硅:0.7V锗:0.3V三.二极管的主要参数

(1)最大整流电流IF——二极管长期连续工作时,允许通过二极管的最大整流电流的平均值。(2)反向击穿电压UBR———

二极管反向电流急剧增加时对应的反向电压值称为反向击穿电压UBR。

(3)反向电流IR——

在室温下,在规定的反向电压下的反向电流值。硅二极管的反向电流一般在纳安(nA)级;锗二极管在微安(A)级。

(4)最高工作频率fM——二极管在高频工作时,结电容不能忽视,单向导电性变差。二极管选项管原则1、要求反向电压高时,选面接触型硅管;2、要求耐高温时,选硅管;3、要求反向电流小时,选硅管;4、要求反向导通电压高和正向压降较低时,选锗管;5、要求导通电流较大时,选面接触型二极管;6、要求工作频率较高时,选点接触型二极管。当稳压二极管工作在反向击穿状态下,工作电流IZ在Izmax和Izmin之间变化时,其两端电压近似为常数稳定电压四、稳压二极管

稳压二极管是应用在反向击穿区的特殊二极管正向同二极管反偏电压≥UZ

反向击穿+UZ-限流电阻五、变容二极管变容二极管属于反偏压二极管,改变其PN结上的反向偏压,即可改变PN结电容量。反向偏压越高,结电容则越少,反向偏压和结电容之间的关系是非线性的。

稳压二极管的主要参数

(1)稳定电压UZ——(2)动态电阻rZ——

在规定的稳压管反向工作电流IZ下,所对应的反向工作电压。

rZ=U

/I

rZ愈小,反映稳压管的击穿特性愈陡。

(3)最小稳定工作电流IZmin——

保证稳压管击穿所对应的电流,若IZ<IZmin则不能稳压。

(4)最大稳定工作电流IZmax——

超过Izmax稳压管会因功耗过大而烧坏。

(5)最大允许耗散功率PZM——

保证稳压管不至于击穿的最大损耗功率,PZM

=UZIZmax六、发光二极管

发光二极管简称为LED,它的正向导通电压一般1-2V。由含镓(Ga)、砷(As)、磷(P)、氮(N)、硅(Si)等的化合物制成的二极管,当加上正向电压时,电子与空空复合时能辐射出可见光,因而可以用来制成发光二极管。砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光,氮化镓二极管发蓝光。符号:七、光电(光敏)二极管光电二极管是在反向电压作用下工作的,没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增大到几十微安,称为光电流。光的强度越大,反向电流也越大。光的变化引起光电二极管电流变化,这就可以把光信号转换成电信号,成为光电传感器。符号:

2.3半导体三极管

半导体三极管,也叫晶体三极管。由于工作时,多数载流子和少数载流子都参与运行,因此,还被称为双极型晶体管(BipolarJunctionTransistor,简称BJT)。

BJT是由两个PN结组成的。半导体三极管频率:高频管、低频管功率:材料:小、中、大功率管硅管、锗管类型:NPN型、PNP型半导体三极管是具有电流放大功能的元件三极管的不同封装形式金属封装塑料封装大功率管中功率管一.三极管的结构NPN型PNP型符号:

三极管的结构特点:(1)发射区的掺杂浓度>>基区掺杂浓度;(2)基区要制造得很薄且掺杂浓度很低;(3)集电结面积要求较大。--NNP发射区集电区基区发射结集电结ecb发射极集电极基极--PPN发射区集电区基区发射结集电结ecb发射极集电极基极一、三极管的结构三个区发射区:杂质浓度很高基区:杂质浓度低且很薄集电区:无特别要求发射结集电结集电区基区发射区cbeNPN型三极管的结构和符号两个PN结发射结集电结三个电极发射极

e基极

b集电极

c集电极

ccollector基极

bbase发射极

eemitterNPN二.三极管的内部工作原理(NPN管)

三极管在工作时要加上适当的直流偏置电压。若在放大工作状态:发射结正偏:+UCE

-+UBE-+UCB-集电结反偏:由VBB保证由VCC、

VBB保证UCB=UCE-UBE>0共发射极接法c区b区e区

(1)因为发射结正偏,所以发射区向基区注入电子,形成了扩散电流IEN

。同时从基区向发射区也有空穴的扩散运动,形成的电流为IEP。但其数量小,可忽略。所以发射极电流IE≈

IEN。

(2)发射区的电子注入基区后,变成了少数载流子。少部分遇到的空穴复合掉,形成IBN。所以基极电流IB≈

IBN。大部分到达了集电区的边缘。1.三极管内部的载流子传输过程(3)因为集电结反偏,收集扩散到集电区边缘的电子,形成电流ICN

另外,集电结区的少子形成漂移电流ICBO。RbRcVBBVCCecb发射极电流二、三极管中载流子的运动和电流分配关系发射:

发射区大量电子向基区发射。2.复合和扩散:电子在基区中复合扩散。3.收集:将扩散过来的电子收集到集电极。同时形成反向饱和电流ICBO。IEICIBICNIENIBNICBO集电极电流基极电流动画2.电流分配关系三个电极上的电流关系:IE=IC+IB定义:(1)IC与IE之间的关系:所以:共基极直流电流的放大系数,其值的大小约为0.9~0.99。

(2)IC与IB之间的关系:联立以下两式:得:所以:令:得:三.三极管的特性曲线(共发射极接法)(1)输入特性曲线

iB=f(uBE)

uCE=const(常数)(1)uCE=0V时,相当于两个PN结并联。(3)uCE≥1V再增加时,曲线右移很不明显。

(2)当uCE=1V时,集电结已进入反偏状态,开始收集电子,所以基区复合减少,在同一uBE

电压下,iB

减小。特性曲线将向右稍微移动一些。死区电压硅0.5V锗0.1V导通压降硅0.7V锗0.3V

(2)输出特性曲线iC=f(uCE)

iB=const

现以iB=60uA一条加以说明。

(1)当uCE=0

V时,因集电极无收集作用,iC=0。(2)uCE↑→Ic

(3)当uCE

>1V后,收集电子的能力足够强。这时,发射到基区的电子都被集电极收集,形成iC。所以uCE再增加,iC基本保持不变。同理,可作出iB=其他值的曲线。

输出特性曲线可以分为三个区域:饱和区——iC受uCE显著控制的区域,该区域内uCE<0.7

V。此时发射结正偏,集电结也正偏。截止区——iC接近零的区域,相当iB=0的曲线的下方。此时,发射结反偏,集电结反偏。放大区——

曲线基本平行等距。此时,发射结正偏,集电结反偏。该区中有:饱和区放大区截止区四.三极管的主要参数1.电流放大系数(2)共基极电流放大系数:

iCE△=20uA(mA)B=40uAICu=0(V)=80uAI△BBBIBiIBI=100uACBI=60uAi一般取20~200之间2.31.5(1)共发射极电流放大系数:

2.极间反向电流

(2)集电极发射极间的穿

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论