版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.设,则代数式的值为()A.-6 B.-5 C. D.2.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤163.下列事件是必然事件的()A.抛掷一枚硬币,四次中有两次正面朝上B.打开电视体育频道,正在播放NBA球赛C.射击运动员射击一次,命中十环D.若a是实数,则|a|≥04.如图,在Rt△ABC中,AC=3,AB=5,则cosA的值为()A. B. C. D.5.某水库大坝高米,背水坝的坡度为,则背水面的坡长为()A.40米 B.60米 C.米 D.米6.在同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图像可能是()A. B. C. D.7.已知⊙O的半径是4,圆心O到直线l的距离d=1.则直线l与⊙O的位置关系是()A.相离 B.相切 C.相交 D.无法判断8.二次函数的图象与轴有且只有一个交点,则的值为()A.1或-3 B.5或-3 C.-5或3 D.-1或39.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为()A. B. C. D.610.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°二、填空题(每小题3分,共24分)11.一只小狗自由自在地在如图所示的某个正方形场地跑动,然后随意停在图中阴影部分的概率是__.12.一组数据3,2,1,4,的极差为5,则为______.13.如图,圆锥的母线长OA=6,底面圆的半径为,一只小虫在圆线底面的点A处绕圆锥侧面一周又回到点A处,则小虫所走的最短路程为___________(结果保留根号)14.如图,⊙O的半径OA长为6,BA与⊙O相切于点A,交半径OC的延长线于点B,BA长为,AH⊥OC,垂足为H,则图中阴影部分面积为_____.(结果保留根号)15.已知反比例函数的图象如图所示,则_____
,在图象的每一支上,随的增大而_____.16.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为▲cm.17.设a,b是一个直角三角形两条直角边的长,且,则这个直角三角形的斜边长为________.18.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)的图象与AB相交于点D.与BC相交于点E,且BD=3,AD=6,△ODE的面积为15,若动点P在x轴上,则PD+PE的最小值是_____.三、解答题(共66分)19.(10分)如图,以等腰△ABC的一腰AC为直径作⊙O,交底边BC于点D,过点D作腰AB的垂线,垂足为E,交AC的延长线于点F.(1)求证:EF是⊙O的切线;(2)证明:∠CAD=∠CDF;(3)若∠F=30°,AD=,求⊙O的面积.20.(6分)如图所示,小吴和小黄在玩转盘游戏,准备了两个可以自由转动的转盘甲、乙,每个转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜;否则小黄胜.(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形区域为止)(1)这个游戏规则对双方公平吗?说说你的理由;(2)请你设计一个对双方都公平的游戏规则.21.(6分)已知二次函数的图象和轴交于点、,与轴交于点,点是直线上方的抛物线上的动点.(1)求直线的解析式.(2)当是抛物线顶点时,求面积.(3)在点运动过程中,求面积的最大值.22.(8分)如图1,已知中,,,,点、在上,点在外,边、与交于点、,交的延长线于点.(1)求证:;(2)当时,求的长;(3)设,的面积为,①求关于的函数关系式.②如图2,连接、,若的面积是的面积的1.5倍时,求的值.23.(8分)某商场“六一”期间进行一个有奖销售的活动,设立了一个可以自由转动的转盘(如图),并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298604落在“可乐”区域的频率0.60.610.60.590.604(1)计算并完成上述表格;(2)请估计当n很大时,频率将会接近__________;假如你去转动该转盘一次,你获得“可乐”的概率约是__________;(结果精确到0.1)(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少度?24.(8分)“江畔”礼品店在十一月份从厂家购进甲、乙两种不同礼品.购进甲种礼品共花费1500元,购进乙种礼品共花费1050元,购进甲种礼品数量是购进乙种礼品数量的2倍,且购进一件乙种礼品比购进一件甲种礼品多花20元.(1)求购进一件甲种礼品、一件乙种礼品各需多少元;(2)元旦前夕,礼品店决定再次购进甲、乙两种礼品共50个.恰逢该厂家对两种礼品的价格进行调整,一件甲种礼品价格比第一次购进时提高了30%,件乙种礼品价格比第次购进时降低了10元,如果此次购进甲、乙两种礼品的总费用不超过3100元,那么这家礼品店最多可购进多少件甲种礼品?25.(10分)在一元二次方程x2-2ax+b=0中,若a2-b>0,则称a是该方程的中点值.(1)方程x2-8x+3=0的中点值是________;(2)已知x2-mx+n=0的中点值是3,其中一个根是2,求mn的值.26.(10分)(1)计算:计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017;(2)先化简,再求值:÷,其中满足.
参考答案一、选择题(每小题3分,共30分)1、A【分析】把a2+2a-12变形为a2+2a+1-13,根据完全平方公式得出(a+1)2-13,代入求出即可.【详解】∵,∴=a2+2a+1-13=(a+1)2-13=(-1+1)2-13=7-13=-6.故选A.【点睛】本题考查了二次根式的化简,完全平方公式的运用,主要考查学生的计算能力.题目比较好,难度不大.2、C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.3、D.【解析】试题解析:A、是随机事件,不符合题意;B、是随机事件,不符合题意;==C、是随机事件,不符合题意;D、是必然事件,符合题意.故选D.考点:随机事件.4、B【分析】根据余弦的定义计算即可.【详解】解:在Rt△ABC中,;故选:B.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.5、A【解析】坡面的垂直高度h和水平宽度l的比叫做坡度(或坡比),我们把斜坡面与水平面的夹角叫做坡角,若用α表示,可知坡度与坡角的关系式,tanα(坡度)=垂直距离÷水平距离,根据公式可得水平距离,依据勾股定理可得问题的答案.【详解】∵大坝高20米,背水坝的坡度为1:,
∴水平距离=20×=20米.
根据勾股定理可得背水面的坡长为40米.
故选A.【点睛】本题考查解直角三角形的应用-坡度、坡角的有关知识,熟悉且会灵活应用坡度公式是解此题的关键.6、A【分析】本题可先由一次函数y=ax+1图象得到字母系数的正负,再与二次函数y=x2+a的图象相比较看是否一致.【详解】解:A、由抛物线y轴的交点在y轴的负半轴上可知,a<0,由直线可知,a<0,正确;B、由抛物线与y轴的交点在y轴的正半轴上可知,a>0,二次项系数为负数,与二次函数y=x2+a矛盾,错误;C、由抛物线与y轴的交点在y轴的负半轴上可知,a<0,由直线可知,a>0,错误;D、由直线可知,直线经过(0,1),错误,故选A.【点睛】考核知识点:一次函数和二次函数性质.7、A【解析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=1,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..8、B【分析】由二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,可知△=0,继而求得答案.【详解】解:∵二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,∴△=b2-4ac=[-(m-1)]2-4×1×4=0,∴(m-1)2=16,解得:m-1=±4,∴m1=5,m2=-1.∴m的值为5或-1.故选:B.【点睛】此题考查了抛物线与x轴的交点问题,注意掌握二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△>0时,抛物线与x轴有2个交点;△=0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.9、A【解析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故选A.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10、B【分析】根据垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧求解.【详解】解:∵直径AB⊥弦CD∴CE=DE故选B.【点睛】本题考查垂径定理,本题属于基础应用题,只需学生熟练掌握垂径定理,即可完成.二、填空题(每小题3分,共24分)11、.【分析】根据概率公式求概率即可.【详解】图上共有16个方格,黑色方格为7个,小狗最终停在黑色方格上的概率是.故答案为:.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.12、-1或1【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=1;当x是最小值,则4-x=5,所以x=-1;故答案为-1或1.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.13、6【分析】利用圆锥的底面周长等于侧面展开图的弧长可得圆锥侧面展开图的圆心角,求出侧面展开图中两点间的距离即为最短距离.【详解】∵底面圆的半径为,∴圆锥的底面周长为2×=3,设圆锥的侧面展开图的圆心角为n.∴,解得n=90°,如图,AA′的长就是小虫所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案为:6.【点睛】本题考查了圆锥的计算,考查圆锥侧面展开图中两点间距离的求法;把立体几何转化为平面几何来求是解决本题的突破点.14、【分析】由已知条件易求直角三角形AOH的面积以及扇形AOC的面积,根据阴影部分的面积=扇形AOC的面积﹣直角三角形AOH的面积,计算即可.【详解】∵BA与⊙O相切于点A,∴AB⊥OA,∴∠OAB=90°,∵OA=6,AB=6,∴tan∠B=,∴∠B=30°,∴∠O=60°,∴∠OAH=30°,∴OH=OA=3,∴AH=3,∴阴影部分的面积=扇形AOC的面积﹣直角三角形AOH的面积=﹣×3×3=;故答案为:.【点睛】此题考查圆的性质,直角三角形中30°角所对的直角边等于斜边的一半,扇形面积公式,三角函数.15、,增大.【解析】根据反比例函数的图象所在的象限可以确定k的符号;根据图象可以直接回答在图象的每一支上,y随x的增大而增大.【详解】根据图象知,该函数图象经过第二、四象限,故k<0;
由图象可知,反比例函数y=在图象的每一支上,y随x的增大而增大.
故答案是:<;增大.【点睛】本题考查了反比例函数的图象.解题时,采用了“数形结合”的数学思想.16、.【解析】如图,连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=AB=(9﹣1)=1.设OA=r,则OD=r﹣3,在Rt△OAD中,OA2﹣OD2=AD2,即r2﹣(r﹣3)2=12,解得r=(cm).17、【分析】此题实际上求的值.设t=a2+b2,将原方程转化为关于t的一元二次方程t(t+1)=12,通过解方程求得t的值即可.【详解】设t=a2+b2,则由原方程,得t(t+1)=12,整理,得(t+4)(t-3)=0,解得t=3或t=-4(舍去).则a2+b2=3,∵a,b是一个直角三角形两条直角边的长,∴这个直角三角形的斜边长为.故答案是:.【点睛】此题考查了换元法解一元二次方程,以及勾股定理,熟练运用勾股定理是解本题的关键.18、.【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,求得B和E的坐标,然后E点关于x的对称得E′,则E′(9,﹣4),连接DE′,交x轴于P,此时,PD+PE=PD+PE′=DE′最小,利用勾股定理即可求得E点关于x的对称得E′,则E′(9,﹣4),连接DE′,交x轴于P,此时,PD+PE=PD+PE′=DE′最小.【详解】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,∵BD=3,AD=6,∴AB=9,设B点的坐标为(9,b),∴D(6,b),∵D、E在反比例函数的图象上,∴6b=k,∴E(9,b),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=9b﹣k﹣k﹣•3•(b﹣b)=15,∴9b﹣6b﹣b=15,解得:b=6,∴D(6,6),E(9,4),作E点关于x的对称得E′,则E′(9,﹣4),连接DE′,交x轴于P,此时,PD+PE=PD+PE′=DE′最小,∵AB=9,BE′=6+4=10,∴DE′==,故答案为.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式,本题属于中等题型.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)π【分析】(1)连接OD,AD,证点D是BC的中点,由三角形中位线定理证OD∥AB,可推出∠ODF=90°,即可得到结论;(2)由OD=OC得到∠ODC=∠OCD,由∠CAD+∠OCD=90°和∠CDF+∠ODC=90°即可推出∠CAD=∠CDF;(3)由∠F=30°得到∠DOC=60°,推出∠DAC=30°,在Rt△ADC中,由锐角三角函数可求出AC的长,推出⊙O的半径,即可求出⊙O的面积.【详解】解:(1)证明:如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,即AD⊥BC,又AB=AC,∴BD=CD,又AO=CO,∴OD∥AB,又FE⊥AB,∴FE⊥OD,∴EF是⊙O的切线;(2)∵OD=OC,∴∠ODC=∠OCD,∵∠ADC=∠ODF=90°,∴∠CAD+∠OCD=90°,∠CDF+∠ODC=90°,∴∠CAD=∠CDF;(3)在Rt△ODF中,∠F=30°,∴∠DOC=90°﹣30°=60°,∵OA=OD,∴∠OAD=∠ODA=∠DOC=30°,在Rt△ADC中,AC===2,∴r=1,∴S⊙O=π•12=π,∴⊙O的面积为π.【点睛】本题考查了圆的有关性质,切线的判定与性质,解直角三角形等,解题关键是能够根据题意作出适当的辅助线,并熟练掌握解直角三角形的方法.20、(1)不公平(2)【解析】解:列表或画树状图正确,转盘甲
转盘乙
1
2
3
4
5
1
(1,1)和为2
(2,1)和为3
(3,1)和为4
(4,1)和为5
(5,1)和为6
2
(1,2)和为3
(2,2)和为4
(3,2)和为5
(4,2)和为6
(5,2)和为7
3
(1,3)和为4
(2,3)和为5
(3,3)和为6
(4,3)和为7
(5,3)和为8
4
(1,4)和为5
(2,4)和为6
(3,4)和为7
(4,4)和为8
(5,4)和为9
(1)数字之和一共有20种情况,和为4,5或6的共有11种情况,∵P(小吴胜)=>P(小黄胜)=,∴这个游戏不公平;(2)新的游戏规则:和为奇数小吴胜,和为偶数小黄胜.理由:数字和一共有20种情况,和为偶数、奇数的各10种情况,∴P(小吴胜)=P(小黄胜)=.21、(1);(2)3;(3)面积的最大值为.【分析】(1)由题意分别将x=0、y=0代入二次函数解析式中求出点C、A的坐标,再根据点A、C的坐标利用待定系数法即可求出直线AC的解析式;(2)由题意先根据二次函数解析式求出顶点,进而利用割补法求面积;(3)根据题意过点作轴交于点并设点的坐标为(),则点的坐标为进而进行分析.【详解】解:(1)分别将x=0、y=0代入二次函数解析式中求出点C、A的坐标为;;将;代入,得到直线的解析式为.(2)由,将其化为顶点式为,可知顶点P为,如图P为顶点时连接PC并延长交x轴于点G,则有,将P点和C点代入求出PC的解析式为,解得G为,所有=3;(3)过点作轴交于点.设点的坐标为(),则点的坐标为∴,当时,取最大值,最大值为.∵,∴面积的最大值为.【点睛】本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.22、(1)证明见解析;(2);(3)①,②.【分析】(1)由圆内接四边形性质得,又,从而可证明;(2)过作于,证明,得,在直角中求出BH的值即可得到结论;(3)①同(2)可得,根据三角形面积公式求解即可;②过作于,则,用含x的代数式表示出的面积,列出方程求解即可.【详解】(1)∵,∴(2)过作于,∵∴∴∴∴∵在直角中,∴∴(3)①由(2)得AH=1,当时,∴②过作于,则,∵,∴,∴,∴,∴∵∴∴解得,经检验,是方程的解.【点睛】本题考查了圆的综合知识、相似三角形的判定与性质等知识,解题的关键是得到,综合性较强,难度较大.23、(1)472,0.596;(2)0.6,0.6;(3)144°.【解析】试题分析:在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率,(1)当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率,(2)利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P,(3)利用频率估计出的概率是近似值.试题解析:(1)如下表:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m6012224
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 细胞内运输中的纳米技术应用-洞察分析
- 医院化验室个人工作总结范文(7篇)
- 《保安服务培训》课件
- 农机配件行业的办公流程与质量控制整合策略
- IT技术支持团队问题解决的动态视觉汇报
- 健康教育课程在校园文化建设中的作用
- 企业内部实验室的节能减排措施
- 健康管理在提升现代生活品质中的重要性
- 《物体的形状改变以后》课件
- 创新客户服务模式引领行业发展
- 食品安全管理制度文本(12篇)
- 小学三年发展规划(2022-2025)
- 《海洋学》第七章 风海流-风驱动的海水流动
- 基于核心素养的初中物理实验教学设计-讲座课件
- 2022(SOP)人民医院伦理委员会标准操作规程
- 小学英语六年级上册随班就读 教案
- 一次风机叶片腐蚀原因及处理方法探究
- 加油站-课程设计
- 草皮铺设检验批质量验收记录
- DK77系列线切割机床使用说明书(电气部份)_图文
- 俄罗斯联邦政府第782号决议 电梯安全技术规程(2009版)
评论
0/150
提交评论