广东省湛江市第二十二中学2022-2023学年数学九上期末检测试题含解析_第1页
广东省湛江市第二十二中学2022-2023学年数学九上期末检测试题含解析_第2页
广东省湛江市第二十二中学2022-2023学年数学九上期末检测试题含解析_第3页
广东省湛江市第二十二中学2022-2023学年数学九上期末检测试题含解析_第4页
广东省湛江市第二十二中学2022-2023学年数学九上期末检测试题含解析_第5页
免费预览已结束,剩余23页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若关于的一元二次方程的一个根是1,则的值为()A.-2 B.1 C.2 D.02.如图,已知点是第一象限内横坐标为2的一个定点,轴于点,交直线于点,若点是线段上的一个动点,,,点在线段上运动时,点不变,点随之运动,当点从点运动到点时,则点运动的路径长是()A. B. C.2 D.3.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=28º,则∠P的度数是()A.50º B.58ºC.56º D.55º4.如图,在正方形中,是等边三角形,的延长线分别交于点,连结与相交于点H.给出下列结论,①△ABE≌△DCF;②△DPH是等腰三角形;③;④,其中正确结论的个数是()A. B. C. D.5.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A. B. C. D.16.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,) C.(,) D.(,4)7.已知二次函数y=ax2+bx+c(a≠0),函数y与自变量x的部分对应值如下表所示:x…﹣10123…y…﹣23676…当y<6时,x的取值范围是()A.x<1 B.x≤3 C.x<1或x>0 D.x<1或x>38.如图,AB是☉O的直径,点C,D在☉O上,且,OD绕着点O顺时针旋转,连结CD交直线AB于点E,当DE=OD时,的大小不可能为()A. B. C. D.9.我们把宽与长的比等于黄金比的矩形称为黄金矩形.如图,在黄金矩形中,的平分线交边于点,于点,则下列结论错误的是()A. B. C. D.10.如图,D是等边△ABC外接圆上的点,且∠CAD=20°,则∠ACD的度数为()A.20° B.30° C.40° D.45°二、填空题(每小题3分,共24分)11.若,则_______.12.如图,,,则的度数是__________.13.如图,将Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是___________.14.如图,中,边上的高长为.作的中位线,交于点;作的中位线,交于点;……顺次这样做下去,得到点,则________.

15.小亮在投篮训练中,对多次投篮的数据进行记录.得到如下频数表:投篮次数20406080120160200投中次数1533496397128160投中的频率0.750.830.820.790.810.80.8估计小亮投一次篮,投中的概率是______.16.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=15,则四边形ABCD的周长为_____.17.已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:x…-2023…y…8003…当x=-1时,y=__________.18.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为_______.三、解答题(共66分)19.(10分)如图,△OAB中,OA=OB=10cm,∠AOB=80°,以点O为圆心,半径为6cm的优弧分别交OA、OB于点M、N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′.求证:AP=BP′;(2)点T在左半弧上,若AT与圆弧相切,求AT的长.(3)Q为优弧上一点,当△AOQ面积最大时,请直接写出∠BOQ的度数为.20.(6分)如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.(1)求证:△AEH≌△CGF.(2)若∠EFG=90°.求证:四边形EFGH是正方形.21.(6分)如图,正方形、等腰的顶点在对角线上(点与、不重合),与交于,延长线与交于点,连接.(1)求证:.(2)求证:(3)若,求的值.22.(8分)甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是__________;(2)随机选取2名同学,求其中有乙同学的概率.23.(8分)在平面直角坐标系xOy中,抛物线().(1)写出抛物线顶点的纵坐标(用含a的代数式表示);(2)若该抛物线与x轴的两个交点分别为点A和点B,且点A在点B的左侧,AB=1.①求a的值;②记二次函数图象在点

A,B之间的部分为W(含

点A和点B),若直线

()经过(1,-1),且与

图形W

有公共点,结合函数图象,求

b

的取值范围.24.(8分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A,B,C,D四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a的值为;(2)求C等级对应扇形的圆心角的度数;(3)获得A等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.25.(10分)在平面直角坐标系中,存在抛物线以及两点和.(1)求该抛物线的顶点坐标;(2)若该抛物线经过点,求此抛物线的表达式;(3)若该抛物线与线段只有一个公共点,结合图象,求的取值范围.26.(10分)如图,顶点为P(2,﹣4)的二次函数y=ax2+bx+c的图象经过原点,点A(m,n)在该函数图象上,连接AP、OP.(1)求二次函数y=ax2+bx+c的表达式;(2)若∠APO=90°,求点A的坐标;(3)若点A关于抛物线的对称轴的对称点为C,点A关于y轴的对称点为D,设抛物线与x轴的另一交点为B,请解答下列问题:①当m≠4时,试判断四边形OBCD的形状并说明理由;②当n<0时,若四边形OBCD的面积为12,求点A的坐标.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.【详解】解:根据题意得:1-3+a=0

解得:a=1.

故选C.【点睛】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.2、D【分析】根据题意利用相似三角形可以证明线段就是点运动的路径(或轨迹),又利用∽求出线段的长度,即点B运动的路径长.【详解】解:由题意可知,,点在直线上,轴于点,则为顶角30度直角三角形,.如下图所示,设动点在点(起点)时,点的位置为,动点在点(终点)时,点的位置为,连接,∵,∴又∵,∴(此处也可用30°角的)∴∽,且相似比为,∴现在来证明线段就是点运动的路径(或轨迹).如图所示,当点运动至上的任一点时,设其对应的点为,连接,,∵,∴又∵,∴∴∽∴又∵∽∴∴∴点在线段上,即线段就是点运动的路径(或轨迹).综上所述,点运动的路径(或轨迹)是线段,其长度为.故选:【点睛】本题考查坐标平面内由相似关系确定的点的运动轨迹,难度很大.本题的要点有两个:首先,确定点B的运动路径是本题的核心,这要求考生有很好的空间想象能力和分析问题的能力;其次,由相似关系求出点B运动路径的长度,可以大幅简化计算,避免陷入坐标关系的复杂运算之中.3、C【分析】利用切线长定理可得切线的性质的PA=PB,,则,,再利用互余计算出,然后在根据三角形内角和计算出的度数.【详解】解:∵PA,PB是⊙O的切线,A,B为切点,∴PA=PB,,∴在△ABP中∴故选:C.【点睛】本题主要考查了切线长定理以及切线的性质,熟练掌握切线长定理以及切线性质是解题的关键.4、A【分析】①利用等边三角形的性质以及正方形的性质得出∠ABE=∠DCF=30°,再直接利用全等三角形的判定方法得出答案;

②利用等边三角形的性质结合正方形的性质得出∠DHP=∠BHC=75°,进而得出答案;

③利用相似三角形的判定与性质结合锐角三角函数关系得出答案;

④根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积-△BCD的面积,得出答案.【详解】∵△BPC是等边三角形,

∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,

在正方形ABCD中,

∵AB=BC=CD,∠A=∠ADC=∠BCD=90°

∴∠ABE=∠DCF=30°,

在△ABE与△CDF中,,

∴△ABE≌△DCF,故①正确;∵PC=BC=DC,∠PCD=30°,

∴∠CPD=75°,

∵∠DBC=45°,∠BCF=60°,

∴∠DHP=∠BHC=18075°,

∴PD=DH,

∴△DPH是等腰三角形,故②正确;

设PF=x,PC=y,则DC=AB=PC=y,

∵∠FCD=30°,∴即,整理得:解得:,则,故③正确;如图,过P作PM⊥CD,PN⊥BC,

设正方形ABCD的边长是4,∵△BPC为正三角形,

∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,

∴∠PCD=30°,∴,,

S△BPD=S四边形PBCD-S△BCD=S△PBC+S△PDC-S△BCD,∴,故④正确;故正确的有4个,

故选:A.【点睛】本题考查了正方形的性质以及全等三角形的判定等知识,解答此题的关键是作出辅助线,利用锐角三角函数的定义表示出出FE及PC的长是解题关键.5、B【分析】列举出所有情况,让恰好是一双的情况数除以总情况数即为所求的概率.【详解】解:设一双是红色,一双是绿色,则列表得:∵一共有12种等可能的情况,恰好是一双的有4种情况,∴恰好是一双的概率:;故选择:B.【点睛】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.6、C【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(1,),∴AE=,OE=1.由等腰三角形底边上的三线合一得OB=1OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得,即,∴O′F=.在Rt△O′FB中,由勾股定理可求BF=,∴OF=.∴O′的坐标为().故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.7、D【分析】根据表格确定出抛物线的对称轴,开口方向,然后根据二次函数的图像与性质解答即可.【详解】∵当x=1时,y=6;当x=1时,y=6,∴二次函数图象的对称轴为直线x=2,∴二次函数图象的顶点坐标是(2,7),由表格中的数据知,抛物线开口向下,∴当y<6时,x<1或x>1.故选D.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.8、C【分析】分三种情况求解即可:①当点D与点C在直径AB的异侧时;②当点D在劣弧BC上时;③当点D在劣弧AC上时.【详解】①如图,连接OC,设,则,,∵,,在中,,,∴,;②如图,连接OC,设,则,,,,在中,,,∴,;(3)如图,设,则,,,,由外角可知,,,,,故选C.【点睛】本题考查了圆的有关概念,旋转的性质,等腰三角形的性质,三角形外角的性质,以及分类讨论的数学思想,分类讨论是解答本题的关键.9、C【分析】设,则,根据黄金矩形的概念结合图形计算,据此判断即可.【详解】因为矩形宽与长的比等于黄金比,因此,设,则,则选项A.,B.,D.正确,C.选项中等式,,∴;故选:C.【点睛】本题考查的是黄金分割、矩形的性质,掌握黄金比值为是解题的关键.10、C【分析】根据圆内接四边形的性质得到∠D=180°-∠B=120°,根据三角形内角和定理计算即可.【详解】∴∠B=60°,∵四边形ABCD是圆内接四边形,∴∠D=180°−∠B=120°,∴∠ACD=180°−∠DAC−∠D=40°,故选C.二、填空题(每小题3分,共24分)11、【分析】由题意直接根据分比性质,进行分析变形计算可得答案.【详解】解:,由分比性质,得.故答案为:.【点睛】本题考查比例的性质,熟练掌握并利用分比性质是解题的关键.12、【分析】根据三角形外角定理求解即可.【详解】∵,且∴故填:.【点睛】本题主要考查三角形外角定理,熟练掌握定理是关键.13、70°【详解】解:∵Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋转的性质得∠C=∠AC′B′=70°.故答案为70°.【点睛】本题考查旋转的性质,掌握旋转图像对应边相等,对应角相等是本题的解题关键.14、或【分析】根据中位线的性质,得出的关系式,代入即可.【详解】根据中位线的性质故我们可得当均成立,故关系式正确∴故答案为:或.【点睛】本题考查了归纳总结的问题,掌握中位线的性质得出的关系式是解题的关键.15、0.1【分析】由小亮每次投篮的投中的频率继而可估计出这名球员投一次篮投中的概率.【详解】解:∵0.75≈0.1,0.13≈0.1,0.12≈0.1,0.79≈0.1,…,∴可以看出小亮投中的频率大都稳定在0.1左右,∴估计小亮投一次篮投中的概率是0.1,故答案为:0.1.【点睛】本题比较容易,考查了利用频率估计概率.大量反复试验下频率值即概率.概率=所求情况数与总情况数之比.16、1【分析】根据切线长定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=25,根据四边形的周长公式计算,得到答案.【详解】∵四边形ABCD是⊙O的外切四边形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=25,∴四边形ABCD的周长=AD+BC+AB+CD=25+25=1,故答案为:1.【点睛】本题考查的是切线长定理,掌握从圆外一点引圆的两条切线,它们的切线长相等是解题的关键.17、3【解析】试题解析:将点代入,得解得:二次函数的解析式为:当时,故答案为:18、(-1010,10102)【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【详解】∵A点坐标为(1,1),

∴直线OA为y=x,A1(-1,1),

∵A1A2∥OA,

∴直线A1A2为y=x+2,

解得或,

∴A2(2,4),

∴A3(-2,4),

∵A3A4∥OA,

∴直线A3A4为y=x+6,

解得或,

∴A4(3,9),

∴A5(-3,9)

…,

∴A2019(-1010,10102),

故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)AT=8;(3)170°或者10°.【分析】(1)欲证明AP=BP′,只要证明△AOP≌△BOP′即可;

(2)在Rt△ATO中,利用勾股定理计算即可;(3)当OQ⊥OA时,△AOQ面积最大,且左右两半弧上各存在一点分别求出即可.【详解】解:(1)证明:∵∠AOB=∠POP′=80°∴∠AOB+∠BOP=∠POP′+∠BOP即∠AOP=∠BOP′在△AOP与△BOP′中,∴△AOP≌△BOP′(SAS),∴AP=BP′;(2)∵AT与弧相切,连结OT,∴OT⊥AT在Rt△AOT中,根据勾股定理,AT=∵OA=10,OT=6,∴AT=8;(3)解:如图,当OQ⊥OA时,△AOQ的面积最大;

理由是:当Q点在优弧MN左侧上,∵OQ⊥OA,

∴QO是△AOQ中最长的高,则△AOQ的面积最大,

∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,

当Q点在优弧MN右侧上,

∵OQ⊥OA,

∴QO是△AOQ中最长的高,则△AOQ的面积最大,

∴∠BOQ=∠AOQ-∠AOB=90°-80°=10°,

综上所述:当∠BOQ的度数为10°或170°时,△AOQ的面积最大.【点睛】本题考查切线的性质、等腰三角形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是正确寻找全等三角形,根据数形结合进行分类讨论.20、(1)证明见解析;(2)证明见解析.【分析】(1)根据全等三角形的判定定理SAS证得结论;(2)先证明四边形EFGH是平行四边形,再证明有一组邻边相等,然后结合∠EFG=90°,即可证得该平行四边形是正方形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C.在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠B=∠D.∵AE=CG,AH=CF,∴EB=DG,HD=BF.∴△BEF≌△DGH(SAS),∴EF=HG.又∵△AEH≌△CGF,∴EH=GF.∴四边形HEFG为平行四边形.∴EH∥FG,∴∠HEG=∠FGE.∵EG平分∠HEF,∴∠HEG=∠FEG,∴∠FGE=∠FEG,∴EF=GF,∴平行四边形EFGH是菱形.又∵∠EFG=90°,∴平行四边形EFGH是正方形.【点睛】本题主要考查了四边形的综合性问题,关键要注意正方形和菱形的性质定理,结合考虑三角形的全等的证明,这是中考的必考点,必须熟练掌握.21、(1)证明见解析;(2)证明见解析;(3).【分析】(1)证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;

(2)根据正方形的性质和全等三角形的性质得到,∠APF=∠ABP,可证明△APF∽△ABP,再根据相似三角形的性质即可求解;

(3)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已知条件得到,由(2)可得,等量代换可得∠CBQ=∠CPQ即可求解.【详解】(1)∵是正方形,∴,,∵是等腰三角形,∴,,∴,∴,∴;(2)∵是正方形,∴,,∵是等腰三角形,∴,∵,∵,∴,∴,∴,∴,∴,;(3)由(1)得,,,∴,由(2),∴,∵,∴,在中,,∴【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识;本题综合性强,有一定难度.22、(1)(2)【解析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,再找出选取2名同学中有乙同学的结果数,然后根据概率公式求解.【详解】解:(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率=;故答案为:(2)画树状图为:共有12种等可能的结果数,其中选取2名同学中有乙同学的结果数为6,所以有乙同学的概率=.【点睛】本题考查1、列表法与树状图法;2、概率公式,难度不大,掌握公式正确计算是解题关键.23、(1)1a+8;(2)①a=-1;②或或【分析】(1)将原表达式变为顶点式,即可得到答案;(2)①根据顶点式可得抛物线的对称轴是x=1,再根据已知条件得到A、B两点的坐标,将坐标代入,即可得到a的值;②分情况讨论,当

()经过(1,-1)和A(-1,0)时,以及当

()经过(1,-1)和B(3,0)时,代入解析式即可求出答案.【详解】(1)==所以顶点坐标为(1,1a+8),则纵坐标为1a+8.(2)①解:∵原解析式变形为:y=∴抛物线的对称轴是x=1又∵抛物线与x轴的两个交点分别为点A和点B,AB=1∴点A和点B各距离对称轴2个单位∵点A在点B的左侧∴A(-1,0),B(3,0)∴将B(3,0)代入∴9a-6a+5a+8=0a=-1②当

()经过(1,-1)和A(-1,0)时,当

()经过(1,-1)和B(3,0)时,∴或或【点睛】本题考查了二次函数、一次函数的综合性题目,数形结合是解答此题的关键.24、(1)8;(2);(3)【分析】(1)根据D等级的人数除以其百分比得到班级总人数,再乘以B等级的百分比即可得a的值;(2)用C等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数;(3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可【详解】解:(1)班级总人数为人,B等级的人数为人,故a的值为8;(2)∴C等级对应扇形的圆心角的度数为.(3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.∴P(一男一女)答:恰好选中一男一女参加比赛的概率为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A的结果数目m,然后利用概率公式计算事件A的概率为.也考查了统计图.25、(1)(0,2);(2);(3)m=2或.【分析】(1)是顶点式,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论