下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A,B,与反比例函数(k>0)在第一象限的图象交于点E,F,过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C,若,则△OEF与△CEF的面积之比是()A.2:1 B.3:1 C.2:3 D.3:22.一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些小球除颜色外都相同,其中有红球3个,黄球2个,蓝球若干,已知随机摸出一个球是红球的概率是,则随机摸出一个球是蓝球的概率是()A. B. C. D.3.如图,在Rt△ABC中,∠ACB=90°,若,BC=2,则sin∠A的值为()A. B. C. D.4.如图,CD是⊙O的直径,已知∠1=30°,则∠2等于()A.30° B.45° C.60° D.70°5.如图,△ABC中,∠A=78°,AB=4,AC=1.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C. D.6.已知反比例函数,下列结论中不正确的是()A.图象必经过点 B.随的增大而增大C.图象在第二,四象限内 D.若,则7.如图,在⊙O中,AB为直径,圆周角∠ACD=20°,则∠BAD等于()A.20° B.40° C.70° D.80°8.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.9.如图,在中,平分于.如果,那么等于()A. B. C. D.10.将抛物线y=3x2﹣3向右平移3个单位长度,得到新抛物线的表达式为()A.y=3(x﹣3)2﹣3 B.y=3x2 C.y=3(x+3)2﹣3 D.y=3x2﹣6二、填空题(每小题3分,共24分)11.如图,反比例函数的图象经过点,过作轴垂线,垂足是是轴上任意一点,则的面积是_________.12.点A,B都在反比例函数图象上,则_____.(填写<,>,=号)13.若点M(1,y1),N(1,y2),P(,y3)都在抛物线y=mx2+4mx+m2+1(m>0)上,则y1、y2、y3大小关系为_____(用“>”连接).14.小明同学身高1.5米,经太阳光照射,在地面的影长为2米,他此时测得旗杆在同一地面的影长为12米,那么旗杆高为_________米.15.在平面直角坐标系中,已知点A(-6,3),B(9,0),以原点O为位似中心,相似比为,把△ABO缩小,则点A对应点A′的坐标是__________.16.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为__.17.如图,在平面直角坐标系中,点A、B的坐标分别是(0,2)、(4,0),点P是直线y=2x+2上的一动点,当以P为圆心,PO为半径的圆与△AOB的一条边所在直线相切时,点P的坐标为__________.18.若、是关于的一元二次方程的两个根,且,则,,,的大小关系是_____________.三、解答题(共66分)19.(10分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).20.(6分)如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.21.(6分)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)请比较①摸出的2个球颜色相同②摸出的2个球中至少有1个白球,这两种情况哪个概率大,请说明理由22.(8分)据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈西尺,人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”大意如下:如图,今有山位于树的西面.山高为未知数,山与树相距里,树高丈尺,人站在离树里的处,观察到树梢恰好与山峰处在同一斜线上,人眼离地尺,问山AB的高约为多少丈?(丈尺,结果精确到个位)23.(8分)学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:(1)求本次共调查了多少学生?(2)补全条形统计图;(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.24.(8分)在一个不透明的袋子里,装有3个分别标有数字﹣1,1,2的乒乓球,他们的形状、大小、质地等完全相同,随机取出1个乒乓球.(1)写出取一次取到负数的概率;(2)小明随机取出1个乒乓球,记下数字后放回袋子里,摇匀后再随机取出1个乒兵球,记下数字.用画树状图或列表的方法求“第一次得到的数与第二次得到的数的积为正数”发生的概率.25.(10分)如图,在中,,点P为内一点,连接PA,PB,PC,求PA+PB+PC的最小值,小华的解题思路,以点A为旋转中心,将顺时针旋转得到,那么就将求PA+PB+PC的值转化为求PM+MN+PC的值,连接CN,当点P,M落在CN上时,此题可解.(1)请判断的形状,并说明理由;(2)请你参考小华的解题思路,证明PA+PB+PC=PM+MN+PC;(3)当,求PA+PB+PC的最小值.26.(10分)佩佩宾馆重新装修后,有间房可供游客居住,经市场调查发现,每间房每天的定价为元,房间会全部住满,当每间房每天的定价每增加元时,就会有一间房空闲,如果游客居住房间,宾馆需对每间房每天支出元的各项费用.设每间房每天的定价增加元,宾馆获利为元.(1)求与的函数关系式(不用写出自变量的取值范围);(2)物价部门规定,春节期间客房定价不能高于平时定价的倍,此时每间房价为多少元时宾馆可获利元?
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据E,F都在反比例函数的图象上设出E,F的坐标,进而分别得出△CEF的面积以及△OEF的面积,然后即可得出答案.【详解】解:设△CEF的面积为S1,△OEF的面积为S2,过点F作FG⊥BO于点G,EH⊥AO于点H,∴GF∥MC,∴=,∵ME•EH=FN•GF,∴==,设E点坐标为:(x,),则F点坐标为:(3x,),∴S△CEF=(3x﹣x)(﹣)=,∵S△OEF=S梯形EHNF+S△EOH﹣S△FON=S梯形EHNF=(+)(3x﹣x)=k∴==.故选:A.【点睛】此题主要考查了反比例函数的综合应用以及三角形面积求法,根据已知表示出E,F的点坐标是解题关键,有一定难度,要求同学们能将所学的知识融会贯通.2、D【分析】先求出口袋中蓝球的个数,再根据概率公式求出摸出一个球是蓝球的概率即可.【详解】设口袋中蓝球的个数有x个,根据题意得:=,解得:x=4,则随机摸出一个球是蓝球的概率是=;故选:D.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.3、C【分析】先利用勾股定理求出AB的长,然后再求sin∠A的大小.【详解】解:∵在Rt△ABC中,,BC=2∴AB=∴sin∠A=故选:C.【点睛】本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中.4、C【解析】试题分析:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°考点:圆周角定理5、C【解析】试题解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.点睛:相似三角形的判定:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两个三角形相似.三组边对应成比例,两个三角形相似.6、B【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k,可以判断出A的正误;根据反比例函数的性质:k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大可判断出B、C、D的正误.【详解】A、反比例函数,所过的点的横纵坐标之积=−6,此结论正确,故此选项不符合题意;B、反比例函数,在每一象限内y随x的增大而增大,此结论不正确,故此选项符合题意;C、反比例函数,图象在第二、四象限内,此结论正确,故此选项不合题意;D、反比例函数,当x>1时图象在第四象限,y随x的增大而增大,故x>1时,−6<y<0;故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.7、C【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.8、A【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合求解.【详解】B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合.故选A.9、D【分析】先根据直角三角形的性质和角平分线的性质可得,再根据等边对等角可得,最后在中,利用直角三角形的性质即可得.【详解】平分则在中,故选:D.【点睛】本题考查了等腰三角形的性质、角平分线的性质、直角三角形的性质:(1)两锐角互余;(2)所对的直角边等于斜边的一半;根据等腰三角形的性质得出是解题关键.10、A【解析】根据二次函数的图象平移规律:左加右减,上加下减,即可得出.【详解】抛物线向右平移3个单位,得到的抛物线的解析式是故选A.【点睛】本题主要考查二次函数的图象平移规律:左加右减,上加下减.二、填空题(每小题3分,共24分)11、【分析】连接OA,根据反比例函数中k的几何意义可得,再根据等底同高的三角形的面积相等即可得出结论【详解】解:连接OA,∵反比例函数的图象经过点,∴;∵过作轴垂线,垂足是;∴AB//OC∴和等底同高;∴;故答案为:【点睛】本题考查了反比例函数比例系数的几何意义、等底同高的三角形的面积,熟练掌握反比例函数的性质是解题的关键12、<.【分析】根据反比例函数的增减性即可得出结论.【详解】解:中,-3<0∴在每一象限内,y随x的增大而增大∵-2<-1<0∴<故答案为:<.【点睛】本题考查了比较反比例函数值的大小,掌握反比例函数的增减性与比例系数的关系是解题的关键.13、y1<y3<y1【分析】利用图像法即可解决问题.【详解】y=mx1+4mx+m1+1(m>0),对称轴为x=,观察二次函数的图象可知:y1<y3<y1.故答案为:y1<y3<y1.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.14、9【解析】设旗杆高为x米,根据同时同地物高与影长成正比列出比例式,求解即可.【详解】设旗杆高为x米,根据题意得,解得:x=9,故答案为:9【点睛】本题主要考查同一时刻物高和影长成正比.考查利用所学知识解决实际问题的能力.15、(—2,1)或(2,—1)【分析】根据位似图形的性质,只要点A的横、纵坐标分别乘以或﹣即可求出结果.【详解】解:∵点A(-6,3),B(9,0),以原点O为位似中心,相似比为把△ABO缩小,∴点A对应点的坐标为(—2,1)或(2,—1).故答案为:(—2,1)或(2,—1).【点睛】本题考查了位似图形的性质,属于基本题型,注意分类、掌握求解的方法是关键.16、3【解析】连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB•cos∠BOM=6×=3,故答案为3.17、(0,2),(﹣1,0),(﹣,1).【分析】先求出点C的坐标,分为三种情况:圆P与边AO相切时,当圆P与边AB相切时,当圆P与边BO相切时,求出对应的P点即可.【详解】∵点A、B的坐标分别是(0,2)、(4,0),∴直线AB的解析式为y=-x+2,∵点P是直线y=2x+2上的一动点,∴两直线互相垂直,即PA⊥AB,且C(-1,0),当圆P与边AB相切时,PA=PO,∴PA=PC,即P为AC的中点,∴P(-,1);当圆P与边AO相切时,PO⊥AO,即P点在x轴上,∴P点与C重合,坐标为(-1,0);当圆P与边BO相切时,PO⊥BO,即P点在y轴上,∴P点与A重合,坐标为(0,2);故符合条件的P点坐标为(0,2),(-1,0),(-,1),故答案为(0,2),(-1,0),(-,1).【点睛】本题主要考查待定系数法确定一次函数关系式,一次函数的应用,及直角三角形的性质,直线与圆的位置关系,可分类3种情况圆与△AOB的三边分别相切,根据直线与圆的位置关系可求解点的坐标.18、【分析】根据题意和二次函数性质,可以判断出的大小关系,本题得以解决.【详解】令,则该函数的图象开口向上,
当时,,
当时,
,
即,
∵是关于的方程的两根,且,
∴,
故答案为:.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.三、解答题(共66分)19、小船到B码头的距离是10海里,A、B两个码头间的距离是(10+10)海里【解析】试题分析:过P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、AM、BP.试题解析:如图:过P作PM⊥AB于M,则∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=AP=10,AM=PM=,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=,∴BP==,即小船到B码头的距离是海里,A、B两个码头间的距离是()海里.考点:解直角三角形的应用-方向角问题.20、(1)CB=2,AP=2;(2)证明见解析;(3)DE=.【分析】(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt△BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得,再利用比例性质可计算出DE=.【详解】解:(1)∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)∵AP=BP,∴OP为△ABC的中位线,∴OP=BC=1,∴,而,∴,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴,即,∴DE=.21、(1)摸出的2个球都是白球的概率为;(2)概率最大的是摸岀的2个球中至少有1个白球.理由见解析.【分析】(1)先画树状图展示所以6种等可能的结果,其中摸出的2个球都是白球的有2种结果,然后根据概率定义求解.(2)根据树状图可知:共有6种等可能的结果,其中摸出的2个球颜色相同的有3种结果,摸出的2个球中至少有1个白球的有5种结果,根据概率公式分别计算出各自的概率,再比较大小即可.【详解】(1)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的2个球都是白球的有2种结果,所以摸出的2个球都是白球的概率为;(2)∵摸出的2个球颜色相同概率为、摸出的2个球中至少有1个白球的概率为,∴概率最大的是摸岀的2个球中至少有1个白球.【点睛】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出,再从中选出符合事件A或B的结果数目,求出概率.22、由的高约为丈.【分析】由题意得里,尺,尺,里,过点作于点,交于点,得尺,里,里,根据相似三角形的性质即可求出.【详解】解:由题意得里,尺,尺,里.如图,过点作于点,交于点.则尺,里,里,,∴△ECH∽△EAG,,丈,丈.答:由的高约为丈.【点睛】此题主要考查了相似三角形在实际生活中的应用,能够将实际问题转化成相似三角形是解题的关键.23、(1)30;(2)作图见解析;(3)240;(4).【解析】试题分析:(1)由D选项的人数及其百分比可得总人数;(2)总人数减去A、C、D选项的人数求得B的人数即可;(3)总人数乘以样本中B选项的比例可得;(4)画树状图列出所有等可能结果,根据概率公式求解可得.试题解析:解:(1)本次调查的学生人数为6÷20%=30;(2)B选项的人数为30﹣3﹣9﹣6=12,补全图形如下:(3)估计“了解”的学生约有600×=240名;(4)画树状图如下:由树状图可知,共有6种等可能结果,其中两人恰好是一男生一女生的有4种,∴被选中的两人恰好是一男生一女生的概率为=.点睛:本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度维护保养合同:叉车定期保养与维护服务
- 2024年大型商场装修设计与施工合同3篇
- 《互联网技术》课件
- 《客户满意度调查》课件
- 《餐饮企业组织结构》课件
- 2024年度叉车操作员培训服务合同
- 2024年度充电桩技术研发与技术咨询服务合同3篇
- 2024年度知识产权许可合同:甲方许可乙方使用知识产权
- 2024中国石化春季校园招聘3500人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信股份限公司天津分公司招聘12人易考易错模拟试题(共500题)试卷后附参考答案
- 山东中小学校体育器材配备标准
- 麻醉科各种应急处理预案流程图
- 4第三章 电力系统运行的灵敏度分析及应用
- 圆锥曲线离心率专题训练
- 保护性约束PPT通用课件
- 国家开放大学《行政组织学》章节测试参考答案
- 中国传媒大学影视艺术学院录音系教学大纲汇总
- 动车组制动系统CRH380B(L)
- 天然气管道安装合作协议
- 房地产市政配套工程流程梳理
- 10KV高压开关柜操作(培训课件)
评论
0/150
提交评论