贵州省兴义市2022年数学八上期末调研试题含解析_第1页
贵州省兴义市2022年数学八上期末调研试题含解析_第2页
贵州省兴义市2022年数学八上期末调研试题含解析_第3页
贵州省兴义市2022年数学八上期末调研试题含解析_第4页
贵州省兴义市2022年数学八上期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,等腰三角形ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则下列结论错误的是()A.∠EBC为36° B.BC=AEC.图中有2个等腰三角形 D.DE平分∠AEB2.菱形的对角线的长分别为6,8,则这个菱形的周长为()A.8 B.20 C.16 D.323.如图,线段AB、CD相交于点O,AO=BO,添加下列条件,不能使的是()A.AC=BD B.∠C=∠D C.AC∥BD D.OC=OD4.甲、乙、丙、丁四名设计运动员参加射击预选赛,他们射击成绩的平均数及方差如下表示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员()甲乙丙丁899811A.甲 B.乙 C.丙 D.丁5.如图,在数轴上表示实数的点可能是().A.点 B.点 C.点 D.点6.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)7.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A.B.C.D.8.(x-m)2=x2+nx+36,则n的值为()A.12 B.-12 C.-6 D.±129.已知二元一次方程组,则m+n的值是()A.1 B.0 C.-2 D.-110.8的立方根是()A.2 B.±2 C.±2 D.2二、填空题(每小题3分,共24分)11.若关于的一元二次方程有实数根,则的取值范围是_______.12.已知,m+2的算术平方根是2,2m+n的立方根是3,则m+n=_____.13.如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=_____.14.已知一组数据:2,4,5,6,8,则它的方差为__________.15.如图,利用图①和图②的阴影面积相等,写出一个正确的等式_____.16.、、的公分母是___________.17.若点和点关于x轴对称,则的值是____.18.如图,,,则的度数为__________.三、解答题(共66分)19.(10分)如图,台风过后,旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆在离地面6米处折断,请你求出旗杆原来的高度?20.(6分)如图是一张纸片,,,,现将直角边沿的角平分线折叠,使它落在斜边上,且与重合.(1)求的长;(2)求的长.21.(6分)如图,是等腰直角三角形,,为延长线上一点,点在上,的延长线交于点,.求证:.22.(8分)如图,△ABC中,AD是角平分线,点G在CA的延长线上,GE交AB于F,交BC于点E,并且∠G=∠AFG.求证:AD∥EF.23.(8分)某校对全校3000名学生本学期参加艺术学习活动的情况进行评价,其中甲班学生本学期参观美术馆的次数以及艺术评价等级和艺术赋分的统计情况,如下表所示:图(1)图(2)(1)甲班学生总数为______________人,表格中的值为_____________;(2)甲班学生艺术赋分的平均分是______________分;(3)根据统计结果,估计全校3000名学生艺术评价等级为级的人数是多少?24.(8分)如图,直角坐标系中,点A的坐标为(3,0),以线段OA为边在第四象限内作等边△AOB,点C为轴正半轴上一动点(OC>3),连结BC,以线段BC为边在第四象限内作等边△CBD,直线DA交轴于点E.(1)证明∠ACB=∠ADB;(2)若以A,E,C为顶点的三角形是等腰三角形,求此时C点的坐标;(3)随着点C位置的变化,的值是否会发生变化?若没有变化,求出这个值;若有变化,说明理由.25.(10分)如图,在平面直角坐标系中,直线y=﹣x+3分别交y轴,x轴于A、B两点,点C在线段AB上,连接OC,且OC=BC.(1)求线段AC的长度;(2)如图2,点D的坐标为(﹣,0),过D作DE⊥BO交直线y=﹣x+3于点E.动点N在x轴上从点D向终点O匀速运动,同时动点M在直线=﹣x+3上从某一点向终点G(2,1)匀速运动,当点N运动到线段DO中点时,点M恰好与点A重合,且它们同时到达终点.i)当点M在线段EG上时,设EM=s、DN=t,求s与t之间满足的一次函数关系式;ii)在i)的基础上,连接MN,过点O作OF⊥AB于点F,当MN与△OFC的一边平行时,求所有满足条件的s的值.26.(10分)如图,点在上,,且,.求证:(1);(2).

参考答案一、选择题(每小题3分,共30分)1、C【解析】根据等腰三角形的性质和线段垂直平分线的性质一一判断即可.【详解】A.∵等腰△ABC的底角为72°,∴∠A=180°﹣72°×2=36°.∵AB的垂直平分线DE交AC于点E,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°.故A正确;B.∵∠ABE=∠A=36°,∴∠BEC=72°.∵∠C=72°,∴∠BEC=∠C,∴BE=BC.∵AE=BE,∴BC=AE,故B正确;C.∵BC=BE=AE,∴△BEC、△ABE是等腰三角形.∵△ABC是等腰三角形,故一共有3个等腰三角形,故C错误;D.∵AE=BE,DE⊥AB,∴DE平分∠AEB.故D正确.故选C.【点睛】本题考查了线段垂直平分线的性质,以及等腰三角形的判定和性质,关键是掌握等边对等角.2、B【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.【详解】由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,

则AB==5,

故这个菱形的周长L=4AB=1.

故选:B.【点睛】此题考查勾股定理,菱形的性质,解题关键在于根据勾股定理计算AB的长.3、A【分析】已知AO=BO,由对顶角相等可得到∠AOC=∠BOD,当添加条件A后,不能得到△AOC≌△BOD;接下来,分析添加其余选项的条件后能否得到证明三角形全等的条件,据此解答【详解】解:题目隐含一个条件是∠AOC=∠BOD,已知是AO=BOA.加AC=BD,根据SSA判定△AOC≌△BOD;B.加∠C=∠D,根据AAS判定△AOC≌△BOD;C.加AC∥BD,则ASA或AAS能判定△AOC≌△BOD;D.加OC=OD,根据SAS判定△AOC≌△BOD故选A【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、B【分析】根据平均数及方差的定义和性质进行选择即可.【详解】由上图可知,甲、乙、丙、丁中乙、丙的平均数最大,为9∵∴乙的方差比丙的方差小∴选择乙更为合适故答案为:B.【点睛】本题考查了平均数和方差的问题,掌握平均数及方差的定义和性质是解题的关键.5、B【分析】先确定

是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵∴∴表示实数的点可能是E,故选:B.【点睛】本题考查实数与数轴上的点的对应关系,正确判断无理数在哪两个相邻的整数之间是解题的关键.6、D【解析】分别根据一次函数的性质及函数图象平移的法则进行解答即可.解:A.∵一次函数y=﹣2x+4中k=﹣2<0,∴函数值随x的增大而减小,故本选项正确;B.∵一次函数y=﹣2x+4中k=﹣2<0,b=4>0,∴此函数的图象经过一.二.四象限,不经过第三象限,故本选项正确;C.由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=﹣2x的图象,故本选项正确;D.∵令y=0,则x=2,∴函数的图象与x轴的交点坐标是(2,0),故本选项错误.故选D.7、D【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.8、D【详解】(x-m)2=x2+nx+36,解得:故选D.9、D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.10、D【详解】解:根据立方根的定义,由23=8,可得8的立方根是2故选:D.【点睛】本题考查立方根.二、填空题(每小题3分,共24分)11、且【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】关于的一元二次方程有实数根∴∴,即且.【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.12、1【分析】根据算术平方根、立方根的意义求出m和n的值,然后代入m+n即可求解.【详解】解:∵m+2的算术平方根是2,∴m+2=4,∴m=2,∵2m+n的立方根是3,∴4+n=27,∴n=23,∴m+n=1,故答案为1.【点睛】本题考查立方根、平方根;熟练掌握立方根、平方根的性质是解题的关键.13、120°【分析】由等边三角形的性质证得∠ADE+∠AED=120º,根据折叠性质及平角定义即可得出结论.【详解】∵三角形ABC是等边三角形,∴∠A=60º,∴∠ADE+∠AED=180º-60º=120º,由折叠性质得:∠ADE=∠EDF,∠AED=∠DEF,∴∠BDF+∠CEF=(180º-2∠ADE)+(180º-2∠AED)=360º-2(∠ADE+∠AED)=360º-240º=120º,故答案为:120º.【点睛】本题考查等边三角形的性质、三角形的内角和定理、折叠性质、平角定义,熟练掌握等边三角形的性质和折叠性质是解答的关键.14、1【分析】先求出这组数据的平均数,再由方差的计算公式计算方差.【详解】解:一组数据2,1,5,6,8,

这组数据的平均数为:,∴这组数据的方差为:.故答案为:1.【点睛】本题考查求一组数的方程.掌握平均数和方差的计算公式是解决此题的关键.15、(a+2)(a﹣2)=a2﹣1【分析】根据图形分别写出图①与图②中阴影部分面积,由阴影部分面积相等得出等式.【详解】∵图①中阴影部分面积=(a+2)(a﹣2),图②中阴影部分面积=a2﹣1,∵图①和图②的阴影面积相等,∴(a+2)(a﹣2)=a2﹣1,故答案为:(a+2)(a﹣2)=a2﹣1.【点睛】本题考查平方差公式的几何背景,结合图形得到阴影部分的面积是解题的关键.16、12x3y-12x2y2【解析】根据确定最简公分母的方法进行解答即可.【详解】系数的最小公倍数是12;x的最高次数是2;y与(x-y)的最高次数是1;所以最简公分母是12x2y(x-y).

故答案为12x2y(x-y).【点睛】此题考查了最简公分母的取法,确定最简公分母的方法有三步,分别为:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,三步得到的因式的积即为最简公分母.17、【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,先求出m、n的值,再计算(-n)m的值【详解】解:∵A(m,n)与点B(3,2)关于x轴对称,

∴m=3,n=2,

∴(-n)m=(-2)3=-1.

故答案为:-1【点睛】此题主要考查了关于x轴、y轴对称的点的坐标,解决此类题的关键是掌握好对称点的坐标规律:

(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;

(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;

(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18、【分析】直接利用全等三角形的性质得出对应角相等进而求出答案.【详解】:∵△ABC≌△DCB,∴∠D=∠A=75°,∠ACB=∠DBC=40°,∴∠DCB=180°-75°-40°=65°,∴∠DCA=65°-40°=25°.故答案为:25°.【点睛】此题主要考查了全等三角形的性质,正确得出对应角的度数是解题关键.三、解答题(共66分)19、16米【分析】利用勾股定理求出AB,即可得到旗杆原来的高度.【详解】由题可知AC⊥BC,AC=6米,BC=8米,∴在Rt△ABC中,由勾股定理可知:,∴AB=10.则旗杆原来的高度为10+6=16米.【点睛】此题考查勾股定理的实际应用,实际问题中构建直角三角形,将所求的问题转化为勾股定理解答是解题的关键.20、(1)10;(2).【分析】(1)利用勾股定理即可得解;(2)首先由折叠的性质得出,,,然后利用勾股定理构建一元二次方程,即可得解.【详解】(1)在中,;(2)由图形折叠的性质可得,,,∴.设,则.在中,,即,解得,即.【点睛】此题主要考查勾股定理的运用以及折叠的性质,解题关键是利用勾股定理构建方程,列出关系式.21、证明见解析【分析】首先证明得,结合,根据三角形内角和定理可求出即可得到结论.【详解】证明:是等腰直角三角形,,,,,即,又已知,,,又,,,,,即:【点睛】此题主要考查了线段垂直的证明,得出是解题的关键.22、见解析.【分析】根据角平分线的性质求得∠BAD=∠CAD,根据题意可得∠CAD=∠G,即可得到结果;【详解】∵AD是角平分线,∴∠BAD=∠CAD,又∵∠BAC=∠G+∠AFG,而∠G=∠BFG,∴∠CAD=∠G,∴AD∥EF(同位角相等,两直线平行).【点睛】本题主要考查了平行线的判定,结合角平分线的性质证明是解题的关键.23、(1)50,5;(2)7.4;(3)600.【分析】(1)用B级的人数除以所占百分比即可得到甲班学生总数,用学生总数减去A,B,C级的人数可得到a的值;(2)根据加权平均数的计算方法求解即可;(3)用3000乘以样本中A级所占的比例即可.【详解】解:(1)甲班学生总数为:20÷40%=50(人),a=50-10-20-15=5,故答案为:50,5;(2)甲班学生艺术赋分的平均分=(分),故答案为:7.4;(3)(人),答:估计全校3000名学生艺术评价等级为级的人数是600人.【点睛】本题考查了统计表与扇形统计图、求加权平均数以及样本估计总体,能够从统计表或统计图中获取有用信息是解题的关键.24、(1)见解析;(2)C点的坐标为(9,0);(3)的值不变,【分析】(1)由△AOB和△CBD是等边三角形得到条件,判断△OBC≌△ABD,即可证得∠ACB=∠ADB;(2)先判断△AEC的腰和底边的位置,利用角的和差关系可证得∠OEA=,AE和AC是等腰三角形的腰,利用直角三角形中,所对的边是斜边的一半可求得AE的长度,因此OC=OA+AC,即可求得点C的坐标;(3)利用角的和差关系可求出∠OEA=,再根据直角三角形中,所对的边是斜边的一半即可证明.【详解】解:(1)∵△AOB和△CBD是等边三角形∴OB=AB,BC=BD,∠OBA=∠CBD=,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD∴在△OBC与△ABD中,OB=AB,∠OBC=∠ABD,BC=BD∴△OBC≌△ABD(SAS)∴∠OCB=∠ADB即∠ACB=∠ADB(2)∵△OBC≌△ABD∴∠BOC=∠BAD=又∵∠OAB=∴∠OAE==,∴∠EAC=,∠OEA=,∴在以A,E,C为顶点的等腰三角形中AE和AC是腰.∵在Rt△AOE中,OA=3,∠OEA=∴AE=6∴AC=AE=6∴OC=3+6=9∴以A,E,C为顶点的三角形是等腰三角形时,C点的坐标为(9,0)(3)的值不变.理由:由(2)得∠OAE=-∠OAB-∠BAD=∴∠OEA=∴在Rt△AOE中,EA=2OA∴=.【点睛】本题主要考查了全等三角形的性质以及判定定理,平面直角坐标系,含角直角三角形的性质,等腰三角形的性质,等边三角形的性质,灵活运用全等三角形的判定定理寻求全等三角形的判定条件证明三角形全等是解题的关键.25、(1)3;(2)i)y=t﹣2;ii)s=或..【分析】(1)根据以及直角三角形斜边中线定理可得点C是AB的中点,即AC=AB,求出点C的坐标和AB的长度,根据AC=AB即可求出线段AC的长度.(2)i)设s、t的表达式为:①s=kt+b,当t=DN=时,求出点(,2);②当t=OD=时,求出点(,6);将点(,2)和点(,6)代入s=kt+b即可解得函数的表达式.ii)分两种情况进行讨论:①当MN∥OC时,如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论