版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.掷一枚质地均匀的硬币10次,下列说法正确的是()A.必有5次正面朝上 B.可能有5次正面朝上C.掷2次必有1次正面朝上 D.不可能10次正面朝上2.二次函数的图象如右图所示,那么一次函数的图象大致是()A. B.C. D.3.计算(的结果为()A.8﹣4 B.﹣8﹣4 C.﹣8+4 D.8+44.一个不透明的盒子装有个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则的值约为()A.8 B.10 C.20 D.405.下面是“育”“才”“水”“井"四个字的甲骨文,是中心对称图形但不是轴对称图形的是()A. B. C. D.6.下列方程中是关于的一元二次方程的是()A. B. C., D.7.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是()A. B.C. D.8.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形不一定是平行四边形D.对角线互相垂直平分且相等的四边形一定是正方形9.若一次函数的图象不经过第二象限,则关于的方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定10.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为()A.OF=CF B.AF=BF C. D.∠DBC=90°11.已知⊙O的半径为4cm,点P在⊙O上,则OP的长为()A.2cm B.4cm C.6cm D.8cm12.已知圆锥的底面半径为3cm,母线为5cm,则圆锥的侧面积是()A.30πcm2 B.15πcm2 C.cm2 D.10πcm2二、填空题(每题4分,共24分)13.在比例尺为1∶500000的地图上,量得A、B两地的距离为3cm,则A、B两地的实际距离为_____km.14.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为_____.15.若2是方程x2﹣2kx+3=0的一个根,则方程的另一根为______.16.如果将抛物线向上平移,使它经过点,那么所得新抛物线的表达式是_______________.17.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0)、B(0,4),则点B2020的横坐标为_____.18.如图,以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′的面积比是_____.三、解答题(共78分)19.(8分)如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙0与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,求CD的长.20.(8分)甲、乙、丙、丁共四支篮球队要进行单循环积分赛(每两个队间均要比赛一场),每天比赛一场,经抽签确定比赛场次顺序.(1)甲抽到第一场出场比赛的概率为;(2)用列表法或树状图计算甲、乙两队抽得第一场进行比赛的概率.21.(8分)阅读下列材料:小辉和小乐一起在学校寄宿三年了,毕业之际,他们想合理分配共同拥有的三件“财产”:一个电子词典、一台迷你唱机、一套珍藏版小说.他们本着“在尊重各自的价值偏好基础上进行等值均分”的原则,设计了分配方案,步骤如下(相应的数额如表二所示):①每人各自定出每件物品在心中所估计的价值;②计算每人所有物品估价总值和均分值(均分:按总人数均分各自估价总值);③每件物品归估价较高者所有;④计算差额(差额:每人所得物品的估价总值与均分值之差);⑤小乐拿225元给小辉,仍“剩下”的300元每人均分.依此方案,两人分配的结果是:小辉拿到了珍藏版小说和375元钱,小乐拿到的电子词典和迷你唱机,但要付出375元钱.(1)甲、乙、丙三人分配A,B,C三件物品,三人的估价如表三所示,依照上述方案,请直接写出分配结果;(2)小红和小丽分配D,E两件物品,两人的估价如表四所示(其中0<m-n<15).按照上述方案的前四步操作后,接下来,依据“在尊重各自的价值偏好基础上进行等值均分”的原则,该怎么分配较为合理?请完成表四,并写出分配结果.(说明:本题表格中的数值的单位均为“元”)22.(10分)如图,抛物线的对称轴是直线,且与轴相交于A,B两点(点B在点A的右侧),与轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)若点P是抛物线上B、C两点之间的一个动点(不与B,C重合),则是否存在一点P,使△BPC的面积最大?若存在,请求出△BPC的最大面积;若不存在,试说明理由.23.(10分)消费者在某火锅店饭后买单时可以参与一个抽奖游戏,规则如下:有张纸牌,它们的背面都是小猪佩奇头像,正面为张笑脸、张哭脸.现将张纸牌洗匀后背面朝上摆放到桌上,然后让消费者去翻纸牌.(1)现小杨有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖,她从中随机翻开一张纸牌,小杨获奖的概率是________.(2)如粜小杨、小月都有翻两张牌的机会,小杨先翻一张,放回后再翻一张;小月同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们谁获奖的机会更大些?通过画树状图或列表法分析说明理由.24.(10分)计算:2cos45°tan30°cos30°+sin260°.25.(12分)如图,AB∥CD,AC与BD的交点为E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求AC,CD的长.26.如图,AB是⊙O的直径,C为⊙O上一点,AD⊥CD,(点D在⊙O外)AC平分∠BAD.(1)求证:CD是⊙O的切线;(2)若DC、AB的延长线相交于点E,且DE=12,AD=9,求BE的长.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】解:掷一枚质地均匀的硬币10次,不一定有5次正面朝上,选项A不正确;可能有5次正面朝上,选项B正确;掷2次不一定有1次正面朝上,可能两次都反面朝上,选项C不正确.可能10次正面朝上,选项D不正确.故选:B.【点睛】本题考查的是随机事件,掌握随机事件的概念是解题的关键,随机事件是指在一定条件下,可能发生也可能不发生的事件.2、D【分析】可先根据二次函数的图象判断a、b的符号,再判断一次函数图象与实际是否相符,判断正误.【详解】解:由二次函数图象,得出a>0,,b<0,
A、由一次函数图象,得a<0,b>0,故A错误;
B、由一次函数图象,得a>0,b>0,故B错误;
C、由一次函数图象,得a<0,b<0,故C错误;
D、由一次函数图象,得a>0,b<0,故D正确.
故选:D.【点睛】本题考查了二次函数图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.3、B【分析】先按照平方差公式与完全平方公式计算,同时按照二次根式的除法计算,再合并即可得到答案.【详解】解:故选B.【点睛】本题考查的是二次根式的混合运算,掌握二次根式的乘法与二次根式的除法运算是解本题的关键.4、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.2,解得,m=20,经检验m=20是所列方程的根且符合实际意义,故选:C.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.5、C【解析】根据中心对称图形与轴对称图形的区别判断即可,轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.【详解】解:A.不是中心对称图形也不是轴对称图形,不符合题意;B.是轴对称图形不是中心对称图形,不符合题意;C.是中心对称图形不是轴对称图形,符合题意;D.是轴对称图形也是中心对称图形,不符合题意;故答案为:C.【点睛】本题考查的知识点是轴对称图形与中心对称图形的判断,熟记二者的区别是解题的关键.6、A【分析】根据一元二次方程的定义解答.【详解】A、是一元二次方程,故A正确;
B、有两个未知数,不是一元二次方程,故B错误;
C、是分式方程,不是一元二次方程,故C正确;
D、a=0时不是一元二次方程,故D错误;
故选:A.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.7、B【解析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得图象的解析式为:y=(x+1)1-1;
故选:B.【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.8、D【分析】根据矩形的判定、菱形的判定、平行四边形和正方形的判定判断即可.【详解】解:A、对角线相等的平行四边形是矩形,原命题是假命题;B、对角线互相垂直的平行四边形是菱形,原命题是假命题;C、对角线互相平分的四边形一定是平行四边形,原命题是假命题;D、对角线互相垂直平分且相等的四边形一定是正方形,原命题是真命题;故选:D.【点睛】此题主要考查了命题与定理,正确把握特殊四边形的判定方法是解题关键.9、A【分析】利用一次函数性质得出k>0,b≤0,再判断出△=k2-4b>0,即可求解.【详解】解:一次函数的图象不经过第二象限,,,,方程有两个不相等的实数根.故选.【点睛】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.10、A【分析】分别根据垂径定理及圆周角定理对各选项进行分析即可.【详解】解:∵DC是⊙O直径,弦AB⊥CD于点F,
∴AF=BF,,∠DBC=90°,
∴B、C、D正确;
∵点F不一定是OC的中点,
∴A错误.故选:A.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.11、B【分析】根据点在圆上,点到圆心的距离等于圆的半径求解.【详解】∵⊙O的半径为4cm,点P在⊙O上,∴OP=4cm.故选:B.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.12、B【解析】试题解析:∵底面半径为3cm,∴底面周长6πcm∴圆锥的侧面积是×6π×5=15π(cm2),故选B.二、填空题(每题4分,共24分)13、1【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,
∴A、B两地的实际距离3×500000=100000cm=1km,
故答案为1.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.14、【解析】试题解析:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长=,故答案为.15、.【解析】根据一元二次方程根与系数的关系即可得出答案.【详解】解:设方程的另一根为x1,又∵x2=2,∴2x1=3,解得x1=,故答案是:.【点睛】本题主要考查一元二次方程根与系数的关系,应该熟练掌握两根之和,两根之积.16、【解析】试题解析:设平移后的抛物线解析式为y=x2+2x-1+b,把A(0,1)代入,得1=-1+b,解得b=4,则该函数解析式为y=x2+2x+1.考点:二次函数图象与几何变换.17、1【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB,∴OA+AB1+B1C2=++4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:1.故答案为:1.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.18、1:1.【解析】根据位似变换的性质定义得到四边形ABCD与四边形A′B′C′D′相似,根据相似多边形的性质计算即可.【详解】解:以点O为位似中心,将四边形ABCD按1:2放大得到四边形A′B′C′D′,则四边形ABCD与四边形A′B′C′D′相似,相似比为1:2,∴四边形ABCD与四边形A′B′C′D′的面积比是1:1,故答案为:1:1.【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.三、解答题(共78分)19、CD=2.【分析】由切线的性质得出AC⊥OD,求出∠A=30°,证出∠ODB=∠CBD,得出OD∥BC,得出∠C=∠ADO=90°,由直角三角形的性质得出∠ABC=60°,BC=AB=6,得出∠CBD=30°,再由直角三角形的性质即可得出结果.【详解】∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tanA==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,∴BC=AB=6,∴∠CBD=∠ABC=30°,∴CD=BC=×6=2.【点睛】本题考查了圆的切线问题,掌握圆的切线的性质以及直角三角形的性质是解题的关键.20、(1);(2)【分析】(1)直接利用概率公式计算可得;(2)先画树状图列出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得.【详解】解答】解:(1)甲抽到第一场出场比赛的概率为,故答案为:;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两队的有2种情况,∴甲、乙两队抽得第一场进行比赛的概率为.【点睛】本题考查了用列表法或树状图计算概率的方法,概率=所求情况数与总情况数之比21、(1)甲:拿到物品C和200元;乙:拿到:450元;丙:拿到物品A、B,付出650元;(2)详见解析.【分析】(1)按照分配方案的步骤进行分配即可;(2)按照分配方案的步骤进行分配即可.【详解】解:(1)如下表:故分配结果如下:甲:拿到物品C和现金:元.乙:拿到现金元.丙:拿到物品A,B,付出现金:元.故答案为:甲:拿到物品C和现金:200元.乙:拿到现金450元.丙:拿到物品A,B,付出650元.(2)因为0<m-n<15所以所以即分配物品后,小莉获得的“价值"比小红高.高出的数额为:所以小莉需拿()元给小红.所以分配结果为:小红拿到物品D和()元钱,小莉拿到物品E并付出()元钱.【点睛】本题考查了代数式的应用,正确读懂题干,理解分配方案是解题的关键.22、(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)当=4时,△PBC的面积最大,最大面积是1.【分析】(1)由抛物线的对称轴是直线x=3,解出a的值,即可求得抛物线解析式,在令其y值为0,解一元二次方程即可求出A和B的坐标;
(2)易求点C的坐标为(0,4),设直线BC的解析式为y=kx+b(k≠0),将B(8,0),C(0,4)代入y=kx+b,解出k和b的值,即得直线BC的解析式;设点P的坐标为(,),过点P作PD∥y轴,交直线BC于点D,则点D的坐标为(,),利用面积公式得出关于x的二次函数,从而求得其最值.【详解】(1)∵抛物线的对称轴是直线,∴,解得,∴抛物线的解析式为:,当时,即,解之得:,,∴点A的坐标为(-2,0),点B的坐标为(8,0),故答案为:,点A的坐标为(-2,0),点B的坐标为(8,0);(2)当时,∴点C的坐标为(0,4)设直线BC的解析式为,将点B(8,0)和点C(0,4)的坐标代入得:,解之得:,∴直线BC的解析式为,假设存在,设点P的坐标为(,),过点P作PD∥轴,交直线BC于点D,交轴于点E,则点D的坐标为(,),如图所示,PD=-()=∴S△PBC=S△PDC+S△PDB====∵-1<0∴当=4时,△PBC的面积最大,最大面积是1.【点睛】本题属于二次函数综合题,综合考查了待定系数法求解析式,一次函数的应用,三角形的面积,解题的关键是学会构建二次函数解决最值问题.23、(1);(2)小月获奖的机会更大些,理由见解析【分析】(1)根据概率公式直接求解即可;(2)首先根据题意分别画出树状图,然后由树状图即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率,比较即可求得答案.【详解】解:(1)有张纸牌,它们的背面都是小猪佩奇头像,正面为张笑脸、张
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度影视剧本改编拍摄合同范本3篇
- 2025年委托回购担保合同
- 房地产税费政策解读
- 二零二五年度门窗行业绿色供应链体系建设合同样本4篇
- 二零二五年度面条产品跨境电商销售合同4篇
- 2025年中兵北斗产业投资有限公司招聘笔试参考题库含答案解析
- 2025年上海未来经济发展有限公司招聘笔试参考题库含答案解析
- 2025年云南富宁安逸殡葬管理公司招聘笔试参考题库含答案解析
- 2025年中船邮轮科技发展有限公司招聘笔试参考题库含答案解析
- 2025年山东中泰证券股份有限公司招聘笔试参考题库含答案解析
- 农民工工资表格
- 【寒假预习】专题04 阅读理解 20篇 集训-2025年人教版(PEP)六年级英语下册寒假提前学(含答案)
- 2024年智能监狱安防监控工程合同3篇
- 100道20以内的口算题共20份
- 高三完形填空专项训练单选(部分答案)
- 护理查房高钾血症
- 项目监理策划方案汇报
- 《职业培训师的培训》课件
- 建筑企业新年开工仪式方案
- 一例产后出血的个案护理
- 急诊与灾难医学课件 03 呼吸困难大课何琳zhenshi
评论
0/150
提交评论