版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔2.方程2x(x﹣3)=5(x﹣3)的根是()A.x= B.x=3 C.x1=,x2=3 D.x1=﹣,x2=﹣33.二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是A. B. C. D.4.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个 B.14个 C.18个 D.28个5.某汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示.当它所受牵引力为1200牛时,汽车的速度为()A.180千米/时 B.144千米/时 C.50千米/时 D.40千米/时6.从,,,这四个数字中任取两个,其乘积为偶数的概率是()A. B. C. D.7.小敏打算在某外卖网站点如下表所示的菜品和米饭.已知每份订单的配送费为3元,商家为促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元.如果小敏在购买下表的所有菜品和米饭时,采取适当的下单方式,那么他的总费用最低可为()菜品单价(含包装费)数量水煮牛肉(小)30元1醋溜土豆丝(小)12元1豉汁排骨(小)30元1手撕包菜(小)12元1米饭3元2A.48元 B.51元 C.54元 D.59元8.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球实验,之后把它放回袋中,搅匀后,再继续摸出一球,记下其颜色,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数49425172232081669833329根据列表,可以估计出m的值是()A.8 B.16 C.24 D.329.若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是A.点A在圆外 B.点A在圆上C.点A在圆内 D.不能确定10.已知:不在同一直线上的三点A,B,C求作:⊙O,使它经过点A,B,C作法:如图,(1)连接AB,作线段AB的垂直平分线DE;(2)连接BC,作线段BC的垂直平分线FG,交DE于点O;(3)以O为圆心,OB长为半径作⊙O.⊙O就是所求作的圆.根据以上作图过程及所作图形,下列结论中正确的是()A.连接AC,则点O是△ABC的内心 B.C.连接OA,OC,则OA,OC不是⊙的半径 D.若连接AC,则点O在线段AC的垂直平分线上11.已知二次函数的图象与轴有两个不同的交点,其横坐标分别为若且则()A. B. C. D.12.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=1035二、填空题(每题4分,共24分)13.若为一元二次方程的一个根,则__________.14.关于x的方程x2﹣3x﹣m=0的两实数根为x1,x2,且,则m的值为_____.15.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为_____.16.只请写出一个开口向下,并且与轴有一个公共点的抛物线的解析式__________.17.如图,在菱形c中,分别是边,对角线与边上的动点,连接,若,则的最小值是___.18.如图,Rt△ABC中,∠C=90°,AB=10,,则AC的长为_______.三、解答题(共78分)19.(8分)在校园文化艺术节中,九年级(1)班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,恰好选到男生是事件(填随机或必然),选到男生的概率是.(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图的方法,求刚好是一男生和一女生的概率.20.(8分)如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,顶点C在y轴的正半轴上,D是BC边上的一点,OC:CD=5:3,DB=1.反比例函数y=(k≠0)在第一象限内的图象经过点D,交AB于点E,AE:BE=1:2.(1)求这个反比例函数的表达式;(2)动点P在矩形OABC内,且满足S△PAO=S四边形OABC.①若点P在这个反比例函数的图象上,求点P的坐标;②若点Q是平面内一点使得以A、B、P、Q为顶点的四边形是菱形求点Q的坐标.21.(8分)如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.(1)求证:△ADE∽△DBE;(2)若DC=7cm,BE=9cm,求DE的长.22.(10分)已知:在△ABC中,AB=AC,AD⊥BC于点D,分别过点A和点C作BC、AD边的平行线交于点E.(1)求证:四边形ADCE是矩形;(2)连结BE,若,AD=,求BE的长.23.(10分)如图,矩形OABC中,A(6,0)、C(0,)、D(0,),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是;②当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式及相应的自变量x的取值范围.24.(10分)综合与探究:操作发现:如图1,在中,,以点为中心,把顺时针旋转,得到;再以点为中心,把逆时针旋转,得到.连接.则与的位置关系为平行;探究证明:如图2,当是锐角三角形,时,将按照(1)中的方式,以点为中心,把顺时针旋转,得到;再以点为中心,把逆时针旋转,得到.连接,①探究与的位置关系,写出你的探究结论,并加以证明;②探究与的位置关系,写出你的探究结论,并加以证明.25.(12分)在一个不透明的布袋中,有三个除颜色外其它均相同的小球,其中两个黑色,一个红色.(1)请用表格或树状图求出:一次随机取出2个小球,颜色不同的概率.(2)如果老师在布袋中加入若干个红色小球.然后小明通过做实验的方式猜测加入的小球数,小明每次換出一个小球记录下慎色并放回,实验数据如下表:实验次数1002003004005001000摸出红球78147228304373752请你帮小明算出老师放入了多少个红色小球.26.定义:点P在△ABC的边上,且与△ABC的顶点不重合.若满足△PAB、△PBC、△PAC至少有一个三角形与△ABC相似(但不全等),则称点P为△ABC的自相似点.如图①,已知点A、B、C的坐标分别为(1,0)、(3,0)、(0,1).(1)若点P的坐标为(2,0),求证点P是△ABC的自相似点;(2)求除点(2,0)外△ABC所有自相似点的坐标;(3)如图②,过点B作DB⊥BC交直线AC于点D,在直线AC上是否存在点G,使△GBD与△GBC有公共的自相似点?若存在,请举例说明;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【解析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【详解】解:水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、瓮中捉鳖是必然事件,故选项C不符合题意;D、守株待兔是随机事件,故选项D符合题意;故选:D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【解析】利用因式分解法解一元二次方程即可.解:方程变形为:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故选C.3、B【解析】试题分析:∵由二次函数的图象知,a<1,>1,∴b>1.∴由b>1知,反比例函数的图象在一、三象限,排除C、D;由知a<1,一次函数的图象与y国轴的交点在x轴下方,排除A.故选B.4、A【分析】根据概率公式计算即可.【详解】解:设袋子中黄球有x个,根据题意,得:=0.30,解得:x=12,即布袋中黄球可能有12个,故选:A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5、C【分析】根据图像可知为反比例函数,图像过点(3000,20),代入(k),即可求出反比例函数的解析式,再求出牵引力为1200牛时,汽车的速度即可.【详解】设函数为(k),代入(3000,20),得,得k=60000,∴,∴牵引力为1200牛时,汽车的速度为=50千米/时,故选C.【点睛】此题主要考查反比例函数的应用,解题的关键是找到已知条件求出反比例函数的解析式.6、C【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其中积为偶数的有6种结果,∴积为偶数的概率是,故选:C.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7、C【分析】根据满30元减12元,满60元减30元,满100元减45元,即可得到结论.【详解】小宇应采取的订单方式是60一份,30一份,所以点餐总费用最低可为60−30+3+30−12+3=54元,答:他点餐总费用最低可为54元.故选C.【点睛】本题考查了有理数的加减混合运算,正确的理解题意是解题的关键.8、C【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.【详解】解:∵通过大量重复试验后发现,摸到黑球的频率稳定于,由题意得:,解得:m=24,故选:C.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率,关键是根据黑球的频率得到相应的等量关系.9、C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【详解】解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内,故选C.10、D【分析】根据三角形的外心性质即可解题.【详解】A:连接AC,根据题意可知,点O是△ABC的外心,故A错误;B:根据题意无法证明,故B错误;C:连接OA,OC,则OA,OC是⊙的半径,故C错误D:若连接AC,则点O在线段AC的垂直平分线上,故D正确故答案为:D.【点睛】本题考查了三角形的确定即不在一条线上的三个点确定一个圆,这个圆是三角形的外接圆,o是三角形的外心.11、C【分析】首先根据二次函数开口向下与轴有两个不同的交点,得出,然后再由对称轴即可判定.【详解】由已知,得二次函数开口向下,与轴有两个不同的交点,∴∵且∴其对称轴∴故答案为C.【点睛】此题主要考查二次函数图象的性质,熟练掌握,即可解题.12、B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.二、填空题(每题4分,共24分)13、-2【分析】把x=1代入已知方程可得关于m的方程,解方程即可求得答案.【详解】解:∵为一元二次方程的一个根,∴,解得:m=-2.故答案为:-2.【点睛】本题考查了一元二次方程的解的定义,属于应知应会题型,熟练掌握一元二次方程的解的概念是解题关键.14、-1.【分析】根据根与系数的关系即可求出答案.【详解】由题意可知:x1+x2=3,x1x2=﹣m,∵,∴﹣3x1+x1+x2=2x1x2,∴m+3=﹣2m,∴m=﹣1,故答案为:﹣1【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.15、1【分析】根据题意当点C的横坐标取最小值时,抛物线的顶点与点A重合,进而可得抛物线的对称轴,则可求出此时点D的最小值,然后根据抛物线的平移可求解.【详解】解:∵点A,B的坐标分别为(1,4)和(4,4),∴AB=3,由抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),可得:当点C的横坐标取最小值时,抛物线的顶点与点A重合,∴抛物线的对称轴为:直线,∵点,∴点D的坐标为,∵顶点在线段AB上移动,∴点D的横坐标的最大值为:5+3=1;故答案为1.【点睛】本题主要考查二次函数的平移及性质,熟练掌握二次函数的性质是解题的关键.16、【分析】要根据开口向下且与x轴有惟一的公共点,写出一个抛物线解析式即可.【详解】解:∵与x轴只有一个公共点,并且开口方向向下,
∴a<0,△=0,即b2-4ac=0,满足这些特点即可.如.
故答案为:(答案不唯一).【点睛】此题主要考查了二次函数的性质,要了解性质与函数中a,b,c的关系.17、【分析】作点Q关于BD对称的对称点Q’,连接PQ,根据两平行线之间垂线段最短,即有当E、P、Q’在同一直线上且时,的值最小,再利用菱形的面积公式,求出的最小值.【详解】作点Q关于BD对称的对称点Q’,连接PQ.∵四边形ABCD为菱形∴,∴当E、P、Q’在同一直线上时,的值最小∵两平行线之间垂线段最短∴当时,的值最小∵∴,∴∵∴解得∴的最小值是.故答案为:.【点睛】本题考查了菱形的综合应用题,掌握菱形的面积公式以及两平行线之间垂线段最短是解题的关键.18、8【解析】在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的长.【详解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案为8.【点睛】此题主要考查锐角三角函数在直角三形中的应用及勾股定理.三、解答题(共78分)19、(1)随机,;(2)树状图见解析,【分析】(1)根据随机事件的概念可知该事件为随机事件,选到男生的概率用男生的人数除以总人数即可;(2)用树状图列出所有情况,找到一男一女的情况,用一男一女的情况数除以总数即可求出概率.【详解】解:(1)随机,男生共3名,总人数为7名,所以选到男生的概率为故答案为随机,(2)树状图如图所示由图可知,共有12种等可能结果,其中刚好是一男生一女生的结果数为6,∴.【点睛】本题主要考查树状图或列表法求随机事件的概率,掌握树状图或列表法是解题的关键.20、(1)y=;(2)①(,4);②(1,3)或(3﹣2,﹣1).【分析】(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m﹣1,n),利用反比例函数图像上的点的坐标特征可求出m的值,之后进一步求出n的值,然后进一步求解即可;(2)根据三角形的面积公式与矩形的面积公式结合S△PAO=S四边形OABC即可进一步求出P的纵坐标.①若点P在这个反比例函数的图象上,利用反比例函数图象上点的坐标特征可求出点P的坐标;②由点A,B的坐标及点P的总坐标可得出AP≠BP,进而可得出AB不能为对角线,设点P的坐标为(t,4),分AP=AB和BP=AB两种情况考虑:(i)当AB=AP时,利用两点间的距离公式可求出t值,进而可得出点P1的坐标,结合P1Q1的长可求出点Q1的坐标;(ii)当BP=AB时,利用两点间的距离公式可求出t值,进而可得出点P2的坐标,结合P2Q2的长可求出点Q2的坐标.【详解】(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m﹣1,n).∵点D,E在反比例函数y=(k≠0)的图象上,∴k=mn=(m﹣1)n,∴m=3.∵OC:CD=5:3,∴n:(m﹣1)=5:3,∴n=5,∴k=mn=×3×5=15,∴反比例函数的表达式为y=.(2)∵S△PAO=S四边形OABC,∴OA∙yP=OA∙OC,∴yP=OC=4.当y=4时,=4,解得:x=,∴若点P在这个反比例函数的图象上,点P的坐标为(,4).②由(1)可知:点A的坐标为(3,0),点B的坐标为(3,5),∵yP=4,yA+yB=5,∴,∴AP≠BP,∴AB不能为对角线.设点P的坐标为(t,4).分AP=AB和BP=AB两种情况考虑(如图所示):(i)当AB=AP时,(3﹣t)2+(4﹣0)2=52,解得:t1=1,t2=12(舍去),∴点P1的坐标为(1,4).又∵P1Q1=AB=5,∴点Q1的坐标为(1,3);(ii)当BP=AB时,(3﹣t)2+(5﹣4)2=52,解得:t3=3﹣2,t4=3+2(舍去),∴点P2的坐标为(3﹣2,4).又∵P2Q2=AB=5,∴点Q2的坐标为(3﹣2,﹣1).综上所述:点Q的坐标为(1,3)或(3﹣2,﹣1).【点睛】本题主要考查了反比例函数的综合运用,熟练掌握相关概念是解题关键.21、(1)证明见解析;(2)DE=12cm.【分析】(1)由平行四边形的对角相等,可得,即可求得,又因公共角,从而可证得;(2)根据相似三角形的对应边成比例求解即可.【详解】(1)平行四边形ABCD中,又;(2)平行四边形ABCD中,由题(1)得,即解得:.【点睛】本题考查了平行四边形的性质、相似三角形的判定定理与性质,熟记各性质与定理是解题关键.22、(1)见解析;(2)【分析】(1)先根据已知条件证四边形ADCE是平行四边形,再加上∠ADC=90°,证平行四边形ADCE是矩形;(2)根据,得到BD与AB的关系,通过解直角三角形,求AD长,则可求EC的值,在Rt△BDE中,利用勾股定理得BE.【详解】(1)证明:∵AE//BC,CE//AD∴四边形ADCE是平行四边形∵AD⊥BC,AB=AC∴∠ADC=90°,∴平行四边形ADCE是矩形(2)解:连接DE,如图:在Rt△ABD中,∠ADB=90°∵∴∴设BD=x,AB=2x∴AD=∵AD=∴x=2∴BD=2∵AB=AC,AD⊥BC∴BC=2BD=4∵矩形ADCE中,EC=AD=,BC=4∴在Rt△BDE中,利用勾股定理得BE===【点睛】本题考查了平行四边形、矩形的判定与性质、矩形的判定、勾股定理、等腰三角形性质的应用,熟练掌握相关性质和定理是解决问题的关键.23、(1)①(6,),②(3,);(2)【分析】(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;②由正切函数,即可求得∠CAO的度数,③由三角函数的性质,即可求得点P的坐标;(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案.【详解】解:(1)①∵四边形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,2),∴点B的坐标为:(6,2);②如图1:当点Q与点A重合时,过点P作PE⊥OA于E,∵∠PQO=60°,D(0,3),∴PE=3,∴AE=,∴OE=OA-AE=6-3=3,∴点P的坐标为(3,3);故答案为:①(6,2),②(3,3);(2)①当0≤x≤3时,如图,OI=x,IQ=PI•tan60°=3,OQ=OI+IQ=3+x;由题意可知直线l∥BC∥OA,∴,∴EF=此时重叠部分是梯形,其面积为:S梯形=(EF+OQ)•OC=(3+x)∴.当3<x≤5时,如图AQ=OIIOOA=x36=x3AH=(x3)S=S梯形﹣S△HAQ=S梯形﹣AH•AQ=(3+x)﹣∴.③当5<x≤9时,如图∵CE∥DP∴∴∴S=(BE+OA)•OC=(12﹣)∴.④当x>9时,如图∵AH∥PI∴∴∴S=OA•AH=.综上:.【点睛】此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用.24、①,证明详见解析;②,证明详见解析.【分析】(1)根据旋转角的定义即可得到,即可证得与的位置关系.(2)过点作,交于点,证明四边形为平行四边形即可解决问题.【详解】①.证明:由旋转的性质,知.又,.②.证明:过点作,交于点..又由旋转的性质知,...又四边形为平行四边形..【点睛】本题考查旋转变换,掌握旋转的性质及平行四边形的判定和性质是解题的关键.25、(1)P=;(2)加入了5个红球【分析】(1)利用列表法表示出所有可能,进而得出结论即可;(2)根据概率列出相应的方程,求解即可.【详解】(1)列表如图,黑1黑2红黑1/(黑1,黑2)(黑1,红)黑2(黑2,黑1)/(黑2,红)红(红,黑1)(红,黑2)/一共有6种等可能事件,其中颜色不同的等可能事件有4种,∴颜色不同的概率为P=(2)由图表可得摸到红球概率为设加入了x个红球=解得x=5经检验x=5是原方程的解答:加入了5个红球。【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.26、(1)见解析;(2)△CPA∽△CAB,此时P(,);△BPA∽△BAC,此时P(,);(3)S(3,-2)是△GBD与△GBC公共的自相似点,见解析【分析】(1)利用:两边对应成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国学校家具行业发展现状及前景规划研究报告
- 2024-2030年中国婴儿洗护用品市场运行动态及前景趋势预测报告
- 2024-2030年中国女性洗液行业市场营销模式及发展前景预测报告
- 2024-2030年中国多型腔热流道管坯模具境外融资报告
- 2024年标准简易个人鱼塘承包合同模板版B版
- 梅河口康美职业技术学院《高级语言程序实践》2023-2024学年第一学期期末试卷
- 茂名职业技术学院《语文教学设计与实施》2023-2024学年第一学期期末试卷
- 微专题定量测定型实验突破策略-2024高考化学一轮考点击破
- 吕梁职业技术学院《生物学科专业导论》2023-2024学年第一学期期末试卷
- 2024年某科技公司与某航空公司关于机载娱乐系统的合同
- 德邦物流-第三方物流服务
- 混凝土冬季施工保温保湿措施
- 心电监护技术
- 2024年华润电力投资有限公司招聘笔试参考题库含答案解析
- 垄断行为的定义与判断准则
- 模具开发FMEA失效模式分析
- 聂荣臻将军:中国人民解放军的奠基人之一
- 材料化学专业大学生职业生涯规划书
- 乳品加工工(中级)理论考试复习题库(含答案)
- 《教材循环利用》课件
- 学生思想政治工作工作证明材料
评论
0/150
提交评论