重庆市江津第二中学2022年数学九年级第一学期期末统考试题含解析_第1页
重庆市江津第二中学2022年数学九年级第一学期期末统考试题含解析_第2页
重庆市江津第二中学2022年数学九年级第一学期期末统考试题含解析_第3页
重庆市江津第二中学2022年数学九年级第一学期期末统考试题含解析_第4页
重庆市江津第二中学2022年数学九年级第一学期期末统考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,,则的值为()A. B. C. D.2.下列说法正确的是().A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件C.“任意画一个三角形,它的内角和等于180°”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()A.28(1-2x)=16 B.16(1+2x)=28 C.28(1-x)2=16 D.16(1+x)2=284.若,则的值为()A.0 B.5 C.-5 D.-105.关于x的一元二次方程x2+bx+c=0的两个实数根分别为﹣2和3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6C.b=5,c=﹣6 D.b=﹣1,c=66.x1,x2是关于x的一元二次方程x2-mx+m-2=0的两个实数根,是否存在实数m使=0成立?则正确的结论是()A.m=0时成立 B.m=2时成立 C.m=0或2时成立 D.不存在7.在RtABC中,∠C=90°,如果,那么的值是()A.90° B.60° C.45° D.30°8.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6) B.(9,6) C. D.(10,6)9.下图中,不是中心对称图形的是()A. B. C. D.10.已知关于x的分式方程无解,关于y的不等式组的整数解之和恰好为10,则符合条件的所有m的和为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,RtABC中,∠C=90°,AC=10,BC=1.动点P以每秒3个单位的速度从点A开始向点C移动,直线l从与AC重合的位置开始,以相同的速度沿CB方向平行移动,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P移动到与点C重合时,点P和直线l同时停止运动.在移动过程中,将PEF绕点E逆时针旋转,使得点P的对应点M落在直线l上,点F的对应点记为点N,连接BN,当BN∥PE时,t的值为_____.12.抛物线的顶点坐标是__________________.13.如图,直线交轴于点B,交轴于点C,以BC为边的正方形ABCD的顶点A(-1,a)在双曲线上,D点在双曲线上,则的值为_______.14.反比例函数的图象在一、三象限,则应满足_________________.15.如图,抛物线与直线交于A(-1,P),B(3,q)两点,则不等式的解集是_____.16.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBn∁nCn+1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B₃的坐标是_____,点Bn的坐标是_____.17.如图,一下水管横截面为圆形,直径为,下雨前水面宽为,一场大雨过后,水面上升了,则水面宽为__________.18.在平面直角坐标系中,解析式为的直线、解析式为的直线如图所示,直线交轴于点,以为边作第一个等边三角形,过点作轴的平行线交直线于点,以为边作第二个等边三角形,……顺次这样做下去,第2020个等边三角形的边长为______.三、解答题(共66分)19.(10分)如图所示,一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,液面刚好过棱CD,并与棱BB'交于点Q.此时液体的形状为直三棱柱,其三视图及尺寸见下图所示请解决下列问题:(1)CQ与BE的位置关系是,BQ的长是dm:(2)求液体的体积;(提示:直棱柱体积=底面积×高)(3)若容器底部的倾斜角∠CBE=α,求α的度数.(参考数据:sin49°=cos41°=,tan37°=)20.(6分)已知与成反比例,当时,,求与的函数表达式.21.(6分)某商场销售一种商品,若将50件该商品按标价打八折销售,比按原标价销售这些商品少获利200元.求该商品的标价为多少元;已知该商品的进价为每件12元,根据市场调查:若按中标价销售,该商场每天销售100件;每涨1元,每天要少卖5件那么涨价后要使该商品每天的销售利润最大,应将销售价格定为每件多少元?最大利润是多少?22.(8分)为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为,a=;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.23.(8分)某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高售价减少销售量的办法增加利润,如果这种商品每件的售价每提高0.5元,其销售量就减少10件,问:①应将每件售价定为多少元,才能使每天的利润为640元?②店主想要每天获得最大利润,请你帮助店主确定商品售价并指出每天的最大利润W为多少元?24.(8分)如图所示,中,,,将翻折,使得点落到边上的点处,折痕分别交边,于点、点,如果,那么______.25.(10分)如图,在中,,,,P是BC上一动点,过P作AP的垂线交CD于E,将翻折得到,延长FP交AB于H,连结AE,PE交AC于G.(1)求证;(2)当时,求AE的长;(3)当时,求AG的长.26.(10分)为了维护国家主权,海军舰队对我国领海例行巡逻.如图,正在执行巡航任务的舰队以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔在北偏东30°方向上.(1)求∠APB的度数.(2)已知在灯塔P的周围40海里范围内有暗礁,问舰队继续向正东方向航行是否安全?

参考答案一、选择题(每小题3分,共30分)1、B【分析】连接BO,过B点和C点分别作y轴的垂线段BE和CD,证明△BEP≌△CDP(AAS),则△BEP面积=△CDP面积;易知△BOE面积=×8=2,△COD面积=|k|.由此可得△BOC面积=△BPO面积+△CPD面积+△COD面积=3+|k|=12,解k即可,注意k<1.【详解】连接BO,过B点和C点分别作y轴的垂线段BE和CD,∴∠BEP=∠CDP,又∠BPE=∠CPD,BP=CP,∴△BEP≌△CDP(AAS).∴△BEP面积=△CDP面积.∵点B在双曲线上,所以△BOE面积=×8=2.∵点C在双曲线上,且从图象得出k<1,∴△COD面积=|k|.∴△BOC面积=△BPO面积+△CPD面积+△COD面积=2+|k|.∵四边形ABCO是平行四边形,∴平行四边形ABCO面积=2×△BOC面积=2(2+|k|),∴2(3+|k|)=12,解得k=±3,因为k<1,所以k=-3.故选:B.【点睛】本题主要考查了反比例函数k的几何意义、平行四边形的面积,解决这类问题,要熟知反比例函数图象上点到y轴的垂线段与此点与原点的连线组成的三角形面积是|k|.2、C【解析】试题解析:A.“购买1张彩票就中奖”是不可能事件,错误;B.“概率为0.0001的事件”是不可能事件,错误;C.“任意画一个三角形,它的内角和等于180°”是必然事件,正确;D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次,错误.故选C.3、C【解析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=1,把相应数值代入即可求解.【详解】解:设该药品平均每次降价的百分率是x,则第一次降价后的价格为28×(1﹣x)元,两次连续降价后的售价是在第一次降价后的价格的基础上降低x,为28×(1﹣x)×(﹣x)元,则列出的方程是28(1﹣x)2=1.故选:C.4、C【分析】将转换成的形式,再代入求解即可.【详解】将代入原式中原式故答案为:C.【点睛】本题考查了代数式的运算问题,掌握代入法是解题的关键.5、B【分析】根据一元二次方程根与系数的关系得到﹣2+3=﹣b,﹣2×3=c,即可得到b与c的值.【详解】由一元二次方程根与系数的关系得:﹣2+3=﹣b,﹣2×3=c,∴b=﹣1,c=﹣6故选:B.【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0的两个根满足,是解题的关键.6、A【解析】∵x1,x2是关于x的一元二次方程x2-bx+b-2=0的两个实数根∴Δ=(b-2)2+4>0x1+x2=b,x1×x2=b-2∴使+=0,则故满足条件的b的值为0故选A.7、C【分析】根据锐角三角函数的定义解得即可.【详解】解:由已知,,∵∴∵∠C=90°∴=45°故选:C【点睛】本题考查了锐角三角函数的定义,解答关键是根据定义和已知条件构造等式求解.8、B【分析】直接利用位似图形的性质结合相似比得出EF的长,进而得出△OBC∽△OEF,进而得出EO的长,即可得出答案.【详解】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴,∵BC=2,∴EF=BE=6,∵BC∥EF,∴△OBC∽△OEF,∴,解得:OB=3,∴EO=9,∴F点坐标为:(9,6),故选:B.【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB的长是解题关键.9、D【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、是中心对称图形,故此选项不合题意;

B、是中心对称图形,故此选项不合题意;

C、是中心对称图形,故此选项不合题意;

D、不是中心对称图形,故此选项符合题意;

故选:D.【点睛】考查了中心对称图形,关键是掌握中心对称图形定义.10、C【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程无解确定出m的值,不等式组整理后表示出解集,由整数解之和恰好为10确定出m的范围,进而求出符合条件的所有m的和即可.【详解】解:,分式方程去分母得:mx+2x-12=3x-9,移项合并得:(m-1)x=3,当m-1=0,即m=1时,方程无解;当m-1≠0,即m≠1时,解得:x=,由分式方程无解,得到:或,解得:m=2或m=,不等式组整理得:,即0≤x<,由整数解之和恰好为10,得到整数解为0,1,2,3,4,可得4<≤5,即,则符合题意m的值为1和,之和为.故选:C.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.二、填空题(每小题3分,共24分)11、【分析】作NH⊥BC于H.首先证明∠PEC=∠NEB=∠NBE,推出EH=BH,根据cos∠PEC=cos∠NEB,推出=,由此构建方程解决问题即可.【详解】解:作NH⊥BC于H.∵EF⊥BC,∠PEF=∠NEF,∴∠FEC=∠FEB=90°,∵∠PEC+∠PEF=90°,∠NEB+∠FEN=90°,∴∠PEC=∠NEB,∵PE∥BN,∴∠PEC=∠NBE,∴∠NEB=∠NBE,∴NE=NB,∵HN⊥BE,∴EH=BH,∴cos∠PEC=cos∠NEB,∴=,∵EF∥AC,∴=,∴=,∴EF=EN=(1﹣3t),∴=,整理得:63t2﹣960t+100=0,解得t=或(舍弃),故答案为:.【点睛】本题考查旋转的性质,平行线的性质,解直角三角形、相似三角形的判定与性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.12、(2,0).【分析】直接利用顶点式可知顶点坐标.【详解】顶点坐标是(2,0),故答案为:(2,0).【点睛】主要考查了求抛物线顶点坐标的方法.13、6【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论.【详解】∵A(−1,a)在反比例函数y=上,∴a=2,∴A(−1,2),∵点B在直线y=kx−1上,∴B(0,−1),∴AB=,∵四边形ABCD是正方形,∴BC=AB=,设B(m,0),∴,∴m=−3(舍)或m=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),将点D的坐标代入反比例函数y=中,∴k=6故答案为:6.【点睛】本题主要考察反比例函数与一次函数的交点问题,解题突破口是确定出点A的坐标.14、【分析】根据条件反比例函数的图象在一、三象限,可知k+2>0,即可求出k的取值.【详解】解:∵反比例函数的图象在一、三象限,∴>0,∴k+2>0,∴故答案为:【点睛】难题考察的是反比例函数的性质,图象在一三象限时k>0,图象在二四象限时k<0.15、或.【分析】由可变形为,即比较抛物线与直线之间关系,而直线PQ:与直线AB:关于与y轴对称,由此可知抛物线与直线交于,两点,再观察两函数图象的上下位置关系,即可得出结论.【详解】解:∵抛物线与直线交于,两点,∴,,∴抛物线与直线交于,两点,观察函数图象可知:当或时,直线在抛物线的下方,∴不等式的解集为或.故答案为或.【点睛】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.16、(4,7)(2n﹣1,2n﹣1)【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点Bn是线段CnAn+1的中点,由此即可得出点Bn的坐标.【详解】解:∵直线l:y=x﹣1与x轴交于点A,∴A1(1,0),观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,∴An(2n﹣1,2n﹣1﹣1)(n为正整数).观察图形可知:B1(1,1),B2(2,3),B3(4,7),点Bn是线段CnAn+1的中点,∴点Bn的坐标是(2n﹣1,2n﹣1).故答案为:(4,7),(2n﹣1,2n﹣1)(n为正整数).【点睛】此题主要考查一次函数与几何,解题的关键是发现坐标的变化规律.17、1【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【详解】解:如图:作OE⊥AB于E,交CD于F,连接OA,OC∵AB=60cm,OE⊥AB,且直径为100cm,∴OA=50cm,AE=∴OE=,∵水管水面上升了10cm,∴OF=40-10=030cm,∴CF=,∴CD=2CF=1cm.故答案为:1.【点睛】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.18、【分析】由题意利用一次函数的性质以及等边三角形性质结合相似三角形的性质进行综合分析求解.【详解】解:将代入分别两个解析式可以求出AO=1,∵为边作第一个等边三角形,∴BO=1,过B作x轴的垂线交x轴于点D,由可得,即,∴,,即B的横轴坐标为,∵与轴平行,∴将代入分别两个解析式可以求出,∵,∴,即相邻两个三角形的相似比为2,∴第2020个等边三角形的边长为.故答案为:.【点睛】本题考查一次函数图形的性质以及等边三角形性质和相似三角形的性质的综合问题,熟练掌握相关知识并运用数形结合思维分析是解题的关键.三、解答题(共66分)19、(1)平行,3;(2)V液=24(dm3);(3)α=37°.【分析】(1)如图可直接得到CQ与BE的位置关系,再由勾股定理求BQ的长;(2)根据三视图得到直三棱柱的边长,再由直棱柱体积=底面积×高,即可求得;(3)根据两直线平行内错角相等和三角函数值,即可求得.【详解】(1)CQ∥BE,BQ==3dm.(2)V液=×3×4×4=24(dm3).(3)∵CQ∥BE,∴∠CBE=∠BCQ,∵在Rt△BCQ中,tan∠BCQ==,∴∠BCQ=37°,∴α=∠BCQ=37°.【点睛】本题考查直线的位置关系、勾股定理、根据三视图计算几何体的体积,以及根据三角函数求角度问题,属于综合基础题.20、【分析】根据反比例的定义,设,再将代入求出k,即可求得.【详解】由题意设,将代入得,解得,∴即.【点睛】本题考查了反比例的定义,利用代入法求解未知数,要注意的是,与的函数表达式指的是形式,如本题最后结果不可写成.21、(1)20;(2)26,980.【分析】(1)设该商品的标价为x元,根据按标价的八折销售该商品50件比按标价销售该商品50件所获得的利润少200元,列方程求解;(2)设该商品每天的销售利润为y元,销售价格定为每件x元,列出y关于x的函数解析式,求出顶点坐标即可得解.【详解】解:设该商品的标价为a元,由题意可得:,解得:;答:该商品的标价为20元;设该商品每天的销售利润为y元,销售价格定为每件x元,由题意可得:;,所以销售单价为26元时,商品的销售利润最大,最大利润是980元.【点睛】本题考查了一元一次方程的应用和运用二次函数解决实际问题.22、(1)故答案为100,30;(2)见解析;(3)0.1.【解析】(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;(2)利用B组的频数为30补全频数分布直方图;(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解.【详解】解:(1),所以样本容量为100;B组的人数为,所以,则;故答案为,;(2)补全频数分布直方图为:(3)样本中身高低于的人数为,样本中身高低于的频率为,所以估计从该地随机抽取名学生,估计这名学生身高低于的概率为.【点睛】本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.23、①应将每件售价定为12元或1元时,能使每天利润为640元;②当售价定为14元时,获得最大利润;最大利润为720元.【分析】①根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式.②根据①中的函数关系式求得利润最大值.【详解】①设每件售价定为x元时,才能使每天利润为640元,(x﹣8)[200﹣20(x﹣10)]=640,解得:x1=12,x2=1.答:应将每件售价定为12元或1元时,能使每天利润为640元.②设利润为y:则y=(x﹣8)[200﹣20(x﹣10)]=﹣20x2+560x﹣3200=﹣20(x﹣14)2+720,∴当售价定为14元时,获得最大利润;最大利润为720元.【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.24、【分析】设BE=x,则AE=5-x=AF=A′F,CF=6-(5-x)=1+x,依据△A'CF∽△BCA,可得,即,进而得到.【详解】解:如图,由折叠可得,∠AFE=∠A′FE,

∵A′F∥AB,∴∠AEF=∠A′FE,

∴∠AEF=∠AFE,∴AE=AF,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论