版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.从1,2,3,4四个数中任取一个数作为十位上的数字,再从2,3,4三个数中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是()A. B. C. D.2.某人从处沿倾斜角为的斜坡前进米到处,则它上升的高度是()A.米 B.米 C.米 D.米3.一个盒子里有完全相同的三个小球,球上分别标上数字-2、1、4随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x的方程有实数根的概率是()A. B. C. D.4.如图,以点A为中心,把△ABC逆时针旋转m°,得到△AB′C′(点B、C的对应点分别为点B′、C′),连接BB′,若AC′∥BB′,则∠CAB′的度数为()A. B. C. D.5.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性最大的是()A.摸出的是白球 B.摸出的是黑球C.摸出的是红球 D.摸出的是绿球6.一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些小球除颜色外都相同,其中有红球3个,黄球2个,蓝球若干,已知随机摸出一个球是红球的概率是,则随机摸出一个球是蓝球的概率是()A. B. C. D.7.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A. B. C. D.8.如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B,②,③,使△ADE与△ACB一定相似()A.①② B.② C.①③ D.①②③9.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm10.函数y=与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A. B.C. D.二、填空题(每小题3分,共24分)11.一元二次方程的根的判别式的值为____.12.在平面直角坐标系中,点P(﹣2,1)关于原点的对称点P′的坐标是_____________.13.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是_____.14.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF的半径是2cm,则这个正六边形的周长是___.15.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是___.16.如图,已知△AOB是直角三角形,∠AOB=90°,∠B=30°,点A在反比例函数y=的图象上,若点B在反比例函数y=的图象上,则的k值为_______.17.把抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.18.抛物线的顶点坐标是______.三、解答题(共66分)19.(10分)如图,已知与⊙交于两点,过圆心且与⊙交于两点,平分.(1)求证:∽(2)作交于,若,,求的值.20.(6分)在一个不透明的盒子里装有三个标记为1,2,3的小球(材质、形状、大小等完全相同),甲先从中随机取出一个小球,记下数字为后放回,同样的乙也从中随机取出一个小球,记下数字为,这样确定了点的坐标.(1)请用列表或画树状图的方法写出点所有可能的坐标;(2)求点在函数的图象上的概率.21.(6分)如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连结OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m.①用含m的代数式表示点P的坐标;②当m为何值时,线段PB最短;(3)当线段PB最短时,平移后的抛物线上是否存在点Q,使S△QMA=2S△PMA,若存在,请求出点Q的坐标;若不存在,请说明理由.22.(8分)取什么值时,关于的方程有两个相等的实数根?求出这时方程的根.23.(8分)如图,在平面直角坐标系中,直线y=﹣x+3与抛物线y=﹣x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣1.动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q,当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.(1)求b、c的值.(2)当点N落在直线AB上时,直接写出m的取值范围.(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN周长为c,求c与m之间的函数关系式,并写出c随m增大而增大时m的取值范围.(4)当△PQM与y轴只有1个公共点时,直接写出m的值.24.(8分)如图,在平面直角坐标系中,点A,C分别在x轴,y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=,点E、F分别是线段AD、AC上的动点,(点E不与点A,D重合),且∠CEF=∠ACB.(1)求AC的长和点D的坐标;(2)求证:;(3)当△EFC为等腰三角形时,求点E的坐标.25.(10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)=;(3)试估算盒子里黑、白两种颜色的球各有多少只?26.(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
参考答案一、选择题(每小题3分,共30分)1、B【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与组成的两位数是3的倍数的情况,再利用概率公式即可求得答案.【详解】画树状图得:
∵共有12种等可能的结果,组成的两位数是3的倍数的有4种情况,
∴组成的两位数是3的倍数的概率是:.故选:B【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.2、A【分析】利用坡角的正弦值即可求解.【详解】解:∵∠ACB=90°,∠A=α,AB=600,∴sinα=,∴BC=600sinα.
故选A.【点睛】此题主要考查坡度坡角问题,正确掌握坡角的定义是解题关键.3、A【详解】解:列表如下:
-214-2---(1,-2)(4,-2)1(-2,1)---(4,1)4(-2,4)(1,4)---所有等可能的情况有6种,其中满足关于x的方程x2+px+q=0有实数根,即满足p2-4q≥0的情况有4种,则P(满足方程的根)=故选:A.4、B【分析】根据旋转的性质可得、,利用等腰三角形的性质可求得,再根据平行线的性质得出,最后由角的和差得出结论.【详解】解:∵以点为中心,把逆时针旋转,得到∴,∴∵∴∴故选:B【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等;也考查了等腰三角形的性质,三角形的内角和定理,平行线的性质及角的和差.5、A【分析】个数最多的就是可能性最大的.【详解】解:因为白球最多,所以被摸到的可能性最大.故选A.【点睛】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.6、D【分析】先求出口袋中蓝球的个数,再根据概率公式求出摸出一个球是蓝球的概率即可.【详解】设口袋中蓝球的个数有x个,根据题意得:=,解得:x=4,则随机摸出一个球是蓝球的概率是=;故选:D.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.7、A【分析】根据平行线分线段成比例定理与相似三角形的性质,逐项判断即得答案.【详解】解:A、∵DE∥BC,∴,故本选项正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故本选项错误;C、∵DE∥BC,∴△ADE∽△ABC,∴,故本选项错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故本选项错误.故选:A.【点睛】本题考查了平行线分线段成比例定理和相似三角形的判定和性质,属于基础题型,熟练掌握相似三角形的判定和性质是解答的关键.8、C【分析】根据相似三角形的判定方法即可一一判断;【详解】解:∵∠A=∠A,∠AED=∠B,
∴△AED∽△ABC,故①正确,
∵∠A=∠A,,
∴△AED∽△ABC,故③正确,
由②无法判定△ADE与△ACB相似,
故选C.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.9、D【解析】分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.详解:连接OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故选D.点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.10、D【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论,然后再对照选项即可.【详解】解:分两种情况讨论:①当k<0时,反比例函数y=在二、四象限,而二次函数y=kx2﹣k开口向下,故A、B、C、D都不符合题意;②当k>0时,反比例函数y=在一、三象限,而二次函数y=kx2﹣k开口向上,与y轴交点在原点下方,故选项D正确;故选:D.【点睛】本题主要考查反比例函数与二次函数的图象,掌握k对反比例函数与二次函数的图象的影响是解题的关键.二、填空题(每小题3分,共24分)11、1.【解析】直接利用根的判别式△=b2-4ac求出答案.【详解】一元二次方程x2+3x=0根的判别式的值是:△=32-4×1×0=1.故答案为1.【点睛】此题主要考查了根的判别式,正确记忆公式是解题关键.12、(2,﹣1)【详解】解:点P(﹣2,1)关于原点的对称点P′的坐标是(2,﹣1).故答案为(2,﹣1).【点睛】本题考查了关于原点对称的点的坐标的特点,注意掌握两个点关于原点对称时,它们的坐标符号相反.13、x=﹣1【分析】所求方程ax+b=0的解,即为函数y=ax+b图像与x轴交点横坐标,根据已知条件中点B即可确定.【详解】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣1,0),∴方程ax+b=0的解是x=﹣1,故答案为:x=﹣1.【点睛】本题主要考查了一次函数与一元一次方程的关系,掌握一次函数与一元一次方程之间的关系是解题的关键.14、12【分析】确定正六边形的中心O,连接EO、FO,易证正六变形的边长等于其半径,可得正六边形的周长.【详解】解:如图,确定正六边形的中心O,连接EO、FO.由正六边形可得是等边三角形所以正六边形的周长为故答案为:【点睛】本题考查了正多边形与圆,灵活利用正多边形的性质是解题的关键.15、180°【详解】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=2S底面面积=2πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得2πr2=×2πr×R,故R=2r.由l扇形弧长=得:2πr=解得n=180°.故答案为:180°【点睛】本题考查扇形面积和弧长公式以及圆锥侧面积的计算,掌握相关公式正确计算是解题关键.16、-3【分析】根据已知条件证得OB=OA,设点A(a,),过点A作AC⊥x轴,过点B作BD⊥x轴,证明△AOC∽△OBD得到,=,得到点B的坐标,由此求出答案.【详解】∵△AOB是直角三角形,∠AOB=90°,∠B=30°,∴OB=OA,设点A(a,),过点A作AC⊥x轴,过点B作BD⊥x轴,∴∠ACO=∠BDO=90°,∴∠BOD+∠OBD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠AOC=∠OBD,∴△AOC∽△OBD,∴,∴,=,∴B(-,),∴k=-=-3,故答案为:-3.【点睛】此题考查相似三角形的判定及性质,反比例函数的性质,求函数的解析式需确定的图象上点的坐标,由此作辅助线求点B的坐标解决问题.17、【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键.18、(1,3)【分析】根据顶点式:的顶点坐标为(h,k)即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:的顶点坐标为(h,k)是解决此题的关键.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)由题意可得∠BOE=∠AOC=∠D,且∠A=∠A,即可证△ACD∽△ABO;(2)由切线的性质和勾股定理可求CD的长,由相似三角形的性质可求AE=,由平行线分线段成比例可得,即可求EF的值.【详解】证明:(1)∵平分∴又∵所对圆心角是,所对的圆周角是∴∴又∵∴∽(2)∵,∴∵,∴∵,∴∵∽∴∴,∴,∵,∴∽∴∴∴【点睛】本题考查了相似三角形的判定和性质,圆的有关知识,勾股定理,求出AE的长是本题的关键.20、(1)见解析;(2).【分析】(1)根据列表分与树形图法即可写出结果;
(2)把所有P点坐标代入函数解析式中即可求解.【详解】(1)树状图如下:
由树状图得,点P所有可能的坐标为:
(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)把代入函数解析式,得,把代入函数解析式,得,把代入函数解析式,得,9个点中有(1,2)、(2,1)、(3,2)共3个点在该函数的图象上,所以.所以点在函数的图象上的概率为.【点睛】本题考查了表格法与树形图法求概率、二次函数图象上点的坐标特征,解决本题的关键是正确列出表格或画出树形图.21、(1)y=2x;(2)①点P的坐标为(2,m2﹣2m+4);②当m=1时,线段PB最短;(3)点Q坐标为(2+,6+2)或(2﹣,6﹣2).【分析】(1)根据点A坐标,用待定系数法求出直线OA的解析式;(2)①因为点M在线段OA所在直线上,可表示出M的坐标,然后用顶点式表示出二次函数解析式,代入可求出点P坐标;②对线段PB的长度用完全平方公式可表示出最小值即可;(3)本题关键是如何表示出△QMA的面积,通过设点Q的坐标可求出△QMA的面积,最终通过解方程可得Q的坐标.【详解】解:(1)设OA所在直线的函数解析式为y=2x,∵A(2,4),∴2k=4⇒k=2,∴OA所在直线的函数解析式为y=2x;(2)①∵顶点M的横坐标为m,且在线段OA上移动,∴y=2m(0≤m≤2),∴顶点M的坐标为(m,2m),∴抛物线函数解析式为y=(x﹣m)2+2m,∴当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2),∴点P的坐标为(2,m2﹣2m+4);②∴|PB|=|m2﹣2m+4|=|(m﹣1)2+3|,∵(m﹣1)2+3≥3,当且仅当m=1时取得最小值,∴当m=1时,线段PB最短;(3)由(2)可得当线段PB最短时,此时点M坐标为(1,2),抛物线解析式为y=(x﹣1)2+2=x2﹣2x+3,假设抛物线上存在点Q使S△QMA=2S△PMA,设点Q坐标为(a,a2﹣2a+3),∴S△PMA==,要想符合题意,故S△QMA=1,∴|MA|==,设点Q到线段MA的距离为h,∴h=,∴S△QMA==1,即=2,即=2或=﹣2,解得a=或a=,∴点Q坐标为(,)或(,).【点睛】本题考查求函数解析式和抛物线的知识,会用待定系数法求函数解析式,对抛物线的性质的运用,是解决本题的关键.22、k=2或10时,当k=2时,x1=x2=,当k=10时,x1=x2=【分析】根据题意,得判别式△=[-(k+2)]2-4×4×(k-1)=0,解此一元二次方程即可求得k的值;然后代入k,利用直接开平方法,即可求得这时方程的根.【详解】解:∵关于x的方程4x2-(k+2)x+k-1=0有两个相等的实数根,∴△=[-(k+2)]2-4×4×(k-1)=k2-12k+20=0,解得:k1=2,k2=10∴k=2或10时,关于x的方程4x2-(k+2)x+k-1=0有两个相等的实数根.当k=2时,原方程为:4x2-4x+1=0,即(2x-1)2=0,解得:x1=x2=;当k=10时,原方程为:4x2-12x+9=0,即(2x-3)2=0,解得:x1=x2=;【点睛】此题考查了一元二次方程根的判别式与一元二次方程的解法.此题难度不大,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23、(1)b=1,c=6;(2)0<m<2或m<-1;(2)-1<m≤1且m≠0,(3)m的值为:或或或.【分析】(1)求出A、点B的坐标代入二次函数表达式即可求解;
(2)当0<m<2时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,此时,N点在直线AB上,同样,当m<-1,此时,N点也在直线AB上即可求解;
(2)当-1<m<2且m≠0时,PQ=-m2+m+6-(-m+2)=-m2+2m+2,c=3PQ=-3m2+8m+12即可求解;
(3)分-1<m≤2、m≤-1,两种情况求解即可.【详解】(1)把y=0代入y=-x+2,得x=2.
∴点A的坐标为(0,2),
把x=-1代入y=-x+2,得y=3.
∴点B的坐标为(-1,3),
把(0,2)、(-1,3)代入y=-x2+bx+c,
解得:b=1,c=6;
(2)当0<m<2时,
以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,此时,N点在直线AB上,
同样,当m<-1,此时,N点也在直线AB上,
故:m的取值范围为:0<m<2或m<-1;
(2)当-1<m<2且m≠0时,
PQ=-m2+m+6-(-m+2)=-m2+2m+2,
∴c=3PQ=-3m2+8m+12;
c随m增大而增大时m的取值范围为-1<m≤1且m≠0,
(3)点P(m,-m2+m+6),则Q(m,-m+2),
①当-1<m≤2时,
当△PQM与y轴只有1个公共点时,PQ=xP,
即:-m2+m+6+m-2=m,
解得:(舍去负值);②当m≤-1时,
△PQM与y轴只有1个公共点时,PQ=-xQ,
即-m+2+m2-m-6=-m,整理得:m2-m-2=0,
解得:(舍去正值),
③m>2时,
同理可得:(舍去负值);
④当-1<m<0时,
PQ=-m,
解得:故m的值为:或或或.【点睛】此题考查了待定系数法求解析式,还考查了三角形和正方形相关知识,本题解题的关键是通过画图确定正方形或三角形所在的位置,此题难度较大.24、(1)AC=20,D(12,0);(2)见解析;(3)(8,0)或(,0).【分析】(1)在Rt△ABC中,利用三角函数和勾股定理即可求出BC、AC的长度,从而得到A点坐标,由点D与点A关于y轴对称,进而得到D点的坐标;(2)欲证,只需证明△AEF与△DCE相似,只需要证明两个对应角相等即可.在△AEF与△DCE中,易知∠CAO=∠CDE,再利用三角形的外角性质证得∠AEF=∠DCE,问题即得解决;(3)当△EFC为等腰三角形时,有三种情况,需要分类讨论:①当CE=EF时,此时△AEF与△DCE相似比为1,则有AE=CD,即可求出E点坐标;②当EF=FC时,利用等腰三角形的性质和解直角三角形的知识易求得CE,再利用(2)题的结论即可求出AE的长,进而可求出E点坐标;③当CE=CF时,可得E点与D点重合,这与已知条件矛盾,故此种情况不存在.【详解】解:(1)∵四边形ABCO为矩形,∴∠B=90°,∵AB=16,tan∠ACB=,∴,解得:BC=12=AO,∴AC=20,A点坐标为(﹣12,0),∵点D与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年简化版:智能交通信号管理系统研发与实施的合同
- 2024年度高速公路停车场经营权招标合同3篇
- 山西艺术职业学院《数据库原理及应用SQL-Server》2023-2024学年第一学期期末试卷
- 山西医科大学《人力资源培训与开发项目实训》2023-2024学年第一学期期末试卷
- 山西职业技术学院《工程项目翻译》2023-2024学年第一学期期末试卷
- 2024年版艺术展览场地租赁合同3篇
- 2024年汽车按揭贷款担保机构服务标准合同3篇
- 2024年电商代运营服务合同
- 2024年某航空公司与某机场关于航班起降服务的合同
- 2024年期国际货物运输合作框架合同书版B版
- 幼儿园大班认识人民币课件
- 公路工程竣工文件资料立卷归档整理细则
- 汉译巴利三藏相应部3-蕴篇
- 高中地理-地形对聚落及交通线路分布的影响2课件-湘教版必修1
- 变电站电气设备简介
- OBE理念与人才培养方案制定ppt课件
- 绿色水彩小清新工作汇报ppt模板
- 案例上课代码fs210-manual
- PLC自动门课程设计
- HP1003磨煤机技术介绍[1]
- GB_T 37515-2019 再生资源回收体系建设规范(高清版)
评论
0/150
提交评论