版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知△AOB与△A1OB1是以点O为位似中心的位似图形,且相似比为1:2,点B的坐标为(-1,2),则点B1的坐标为()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)2.一次函数y=bx+a与二次函数y=ax2+bx+c(a0)在同一坐标系中的图象大致是()A. B. C. D.3.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()A.28(1-2x)=16 B.16(1+2x)=28 C.28(1-x)2=16 D.16(1+x)2=284.如图,矩形ABCD中,BC=4,CD=2,O为AD的中点,以AD为直径的弧DE与BC相切于点E,连接BD,则阴影部分的面积为()A.π B. C.π+2 D.+45.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼6.二次函数y=x2+4x+3,当0≤x≤时,y的最大值为()A.3 B.7 C. D.7.将点A(﹣3,4)绕原点顺时针方向旋转180°后得到点B,则点B的坐标为()A.(3,﹣4) B.(﹣4,3) C.(﹣4,﹣3) D.(﹣3,﹣4)8.如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠OBC的度数为()A.18° B.36° C.60° D.54°9.二次函数(b>0)与反比例函数在同一坐标系中的图象可能是()A. B. C. D.10.如图,AB是⊙O的直径,∠AOC=130°,则∠D等于()A.25° B.35° C.50° D.65°二、填空题(每小题3分,共24分)11.若、是方程的两个实数根,代数式的值是______.12.从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是_____.13.已知一元二次方程x2-10x+21=0的两个根恰好分别是等腰三角形ABC的底边长和腰长,则△ABC的周长为_________.14.如图,已知的半径为2,内接于,,则__________.15.如图,在△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为____.16.半径为4的圆中,长为4的弦所对的圆周角的度数是_________.17.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;18.若,则=___________.三、解答题(共66分)19.(10分)小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6,求旗杆AB的高.20.(6分)解方程:(1)3x(x-2)=4(x-2);(2)2x2-4x+1=021.(6分)如图,已知点在反比例函数的图像上.(1)求a的值;(2)如果直线y=x+b也经过点A,且与x轴交于点C,连接AO,求的面积.22.(8分)如图,双曲线经过点P(2,1),且与直线y=kx﹣4(k<0)有两个不同的交点.(1)求m的值.(2)求k的取值范围.23.(8分)举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹”,车辆经过这座大桥收费站时,从已开放的4个收费通道A、B、C、D中可随机选择其中一个通过.(1)一辆车经过收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.24.(8分)(1)如图①,AB为⊙O的直径,点P在⊙O上,过点P作PQ⊥AB,垂足为点Q.说明△APQ∽△ABP;(2)如图②,⊙O的半径为7,点P在⊙O上,点Q在⊙O内,且PQ=4,过点Q作PQ的垂线交⊙O于点A、B.设PA=x,PB=y,求y与x的函数表达式.25.(10分)一个不透明袋子中有个红球,个绿球和个白球,这些球除颜色外无其他差别,当时,从袋中随机摸出个球,摸到红球和摸到白球的可能性(填“相同”或“不相同”);从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于,则的值是;在的情况下,如果一次摸出两个球,请用树状图或列表法求摸出的两个球颜色不同的概率.26.(10分)如图,AB是的直径,点C,D在上,且BD平分∠ABC.过点D作BC的垂线,与BC的延长线相交于点E,与BA的延长线相交于点F.(1)求证:EF与相切:(2)若AB=3,BD=,求CE的长.
参考答案一、选择题(每小题3分,共30分)1、A【解析】过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,依据△AOB和△A1OB1相似,且相似比为1:2,即可得到,再根据△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,进而得出点B1的坐标为(2,-4).【详解】解:如图,过B作BC⊥y轴于C,过B1作B1D⊥y轴于D,
∵点B的坐标为(-1,2),
∴BC=1,OC=2,
∵△AOB和△A1OB1相似,且相似比为1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,
∴△BOC∽△B1OD,
∴OD=2OC=4,B1D=2BC=2,
∴点B1的坐标为(2,-4),
故选:A.【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.2、C【解析】A.由抛物线可知,a>0,x=−<0,得b<0,由直线可知,a>0,b>0,故本选项错误;B.由抛物线可知,a>0,x=−>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C.由抛物线可知,a<0,x=−<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D.由抛物线可知,a<0,x=−<0,得b<0,由直线可知,a<0,b>0,故本选项错误.故选C.3、C【解析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=1,把相应数值代入即可求解.【详解】解:设该药品平均每次降价的百分率是x,则第一次降价后的价格为28×(1﹣x)元,两次连续降价后的售价是在第一次降价后的价格的基础上降低x,为28×(1﹣x)×(﹣x)元,则列出的方程是28(1﹣x)2=1.故选:C.4、A【分析】连接OE交BD于F,如图,利用切线的性质得到OE⊥BC,再证明四边形ODCE和四边形ABEO都是正方形得到BE=2,∠DOE=∠BEO=90°,易得△ODF≌△EBF,所以S△ODF=S△EBF,然后根据扇形的面积公式,利用阴影部分的面积=S扇形EOD计算即可.【详解】连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC.∵四边形ABCD为矩形,OA=OD=2,而CD=2,∴四边形ODCE和四边形ABEO都是正方形,∴BE=2,∠DOE=∠BEO=90°.∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF=S△EBF,∴阴影部分的面积=S扇形EOD.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形面积公式.5、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.6、D【解析】利用配方法把二次函数解析式化为顶点式,根据二次函数的性质解答.【详解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,则当x>﹣2时,y随x的增大而增大,∴当x=时,y的最大值为()2+4×+3=,故选:D.【点睛】本题考查配方法把二次函数解析式化为顶点式根据二次函数性质解答的运用7、A【分析】根据点A(﹣3,4)绕坐标原点旋转180°得到点B,即可得出答案.【详解】解:根据点A(﹣3,4)绕坐标原点旋转180°得到点B,可知A、B两点关于原点对称,∴点B坐标为(3,﹣4),故选:A.【点睛】本题考查坐标与图形变换—旋转,解题关键是熟练掌握旋转的旋转.8、D【解析】根据圆周角定理,由∠A=36°,可得∠O=2∠A=72°,然后根据OB=OC,求得∠OBC=12(180°-∠O)=1故选:D点睛:此题主要考查了圆周角定理,解题时,根据同弧所对的圆周角等于圆心角的一半,求出圆心角,再根据等腰三角形的性质和三角形的内角和定理求解即可,解题关键是发现同弧所对的圆心角和圆周角,明确关系进行计算.9、B【解析】试题分析:先根据各选项中反比例函数图象的位置确定a的范围,再根据a的范围对抛物线的大致位置进行判断,从而对各选项作出判断:∵当反比例函数经过第二、四象限时,a<0,∴抛物线(b>0)中a<0,b>0,∴抛物线开口向下.所以A选项错误.∵当反比例函数经过第一、三象限时,a>0,∴抛物线(b>0)中a>0,b>0,∴抛物线开口向上,抛物线与y轴的交点在x轴上方.所以B选项正确,C,D选项错误.故选B.考点:1.二次函数和反比例函数的图象与系数的关系;2.数形结合思想的应用.10、A【解析】试题分析:∵AB是⊙O的直径,∴∠BOC=180°-∠AOC=180°-130°=50°,∴∠D=∠BOC=×50°=25°.故选A.考点:圆周角定理二、填空题(每小题3分,共24分)11、1【分析】先对所求代数式进行变形为,然后将代入方程中求出的值,根据根与系数的关系求出的值,最后代入即可求解.【详解】∵是方程的根∴∴∵、是方程的两个实数根∴原式=故答案为:1.【点睛】本题主要考查一元二次方程的根,根与系数的关系,掌握根与系数的关系,能够对所求代数式进行适当变形是解题的关键.12、【解析】从数﹣2,﹣,1,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,由题意可知正比例函数y=kx的图象经过第三、第一象限,即可得到k=mn>1.由树状图可知符合mn>1的情况共有2种,因此正比例函数y=kx的图象经过第三、第一象限的概率是.故答案为.13、1【分析】先求出方程的解,然后分两种情况进行分析,结合构成三角形的条件,即可得到答案.【详解】解:∵一元二次方程x2-10x+21=0有两个根,∴,∴,∴或,当3为腰长时,3+3<7,不能构成三角形;当7为腰长时,则周长为:7+7+3=1;故答案为:1.【点睛】本题考查了解一元二次方程,等腰三角形的定义,构成三角形的条件,解题的关键是掌握所学的知识,注意运用分类讨论的思想进行解题.14、【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案为:2.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15、17°【详解】解:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B′AC′=33°,∠BAB′=50°,∴∠B′AC的度数=50°−33°=17°.故答案为17°.16、或【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得是等边三角形,再利用圆周角定理,即可得出答案.【详解】.如图所示在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵,∴∴是等边三角形∴∴∴∴所对的圆周角的度数为或故答案为:或.【点睛】本题考查了圆周角的问题,掌握圆周角定理是解题的关键.17、6【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.18、【分析】根据题干信息,利用已知得出a=b,进而代入代数式求出答案即可.【详解】解:∵,∴a=b,∴=.故答案为:.【点睛】本题主要考查比例的性质,正确得出a=b,并利用代入代数式求值是解题关键.三、解答题(共66分)19、(1)见解析(2)8m【详解】试题分析:(1)利用太阳光线为平行光线作图:连结CE,过A点作AF∥CE交BD于F,则BF为所求;(2)证明△ABF∽△CDE,然后利用相似比计算AB的长.试题解析:(1)连结CE,过A点作AF∥CE交BD于F,则BF为所求,如图;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴,即,∴AB=8(m),答:旗杆AB的高为8m.20、(1)x1=2,x2=;(2),.【分析】(1)先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可;
(2)先求出b2-4ac的值,再代入公式求出即可.【详解】解:(1)3x(x-2)=4(x-2),
3x(x-2)-4(x-2)=0,
(x-2)(3x-4)=0,
x-2=0,3x-4=0,
x1=2,x2=;
(2)2x2-4x+1=0,
b2-4ac=42-4×2×1=8,,
,.【点睛】本题考查了解一元二次方程,能够选择适当的方法解一元二次方程是解此题的关键.21、(1)2;(2)1【分析】(1)将A坐标代入反比例函数解析式中,即可求出a的值;(2)由(1)求出的a值,确定出A坐标,代入直线解析式中求出b的值,令直线解析式中y=0求出x的值,确定出OC的长,△AOC以OC为底,A纵坐标为高,利用三角形面积公式求出即可.【详解】(1)将A(1,a)代入反比例解析式得:;(2)由a=2,得到A(1,2),代入直线解析式得:1+b=2,解得:b=1,即直线解析式为y=x+1,令y=0,解得:x=-1,即C(-1,0),OC=1,则S△AOC=×1×2=1.【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,三角形的面积求法,熟练掌握待定系数法是解本题的关键.22、(1)m=2;(2)k的取值范围是﹣2<k<0.【解析】(1)将点P坐标代入,利用待定系数法求解即可;(2)由题意可得关于x的一元二次方程,根据有两个不同的交点,可得△=(﹣4)2﹣4k•(﹣2)>0,求解即可.【详解】(1)∵双曲线经过点P(2,1),∴m=2×1=2;(2)∵双曲线与直线y=kx﹣4(k<0)有两个不同的交点,∴,整理得:kx2﹣4x﹣2=0,∴△=(﹣4)2﹣4k•(﹣2)>0,∴k>﹣2,∴k的取值范围是﹣2<k<0.【点睛】本题考查了反比例函数与一次函数综合,涉及了待定系数法、一元二次方程根的判别式等,熟练掌握相关知识是解题的关键.23、(1);(2).【解析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】解答:(1)一辆车经过收费站时,选择A通道通过的概率是,故答案为.(2)列表如下:ABCDAAAABACADBBABBBCBDCCACBCCCDDDADBDCDD由表可知,共有16种等可能结果,其中选择不同通道通过的有12种结果,所以选择不同通道通过的概率为=.【点睛】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.24、(1)见解析;(2)【分析】(1)根据圆周角定理可证∠APB=90°,再根据相似三角形的判定方法:两角对应相等,两个三角形相似即可求证结论;(2)连接PO,并延长PO交⊙O于点C,连接AC,根据圆周角定理可得∠PAC=90°,∠C=∠B,求得∠PAC=∠PQB,根据相似三角形的性质即可得到结论.【详解】(1)如图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年大型油田勘探与开发合同
- 2024年工程项目变更与延期合同
- 2024年城市公共自行车租赁合同:自行车租赁服务与运营管理协议
- 2024年工程代理与居间合作协议
- 2024年品牌服装设计制作与销售合同
- 2024年国际电信服务合同
- 企业股份托管2024年股权代持合同
- 借款内容合同
- 会计师事务所竞业禁止合同(2024年版)
- 互联网支付协议
- 锂电池供应商的合作协议书范文
- 杭州市2025届高三教学质量检测(一模) 英语试题卷(含答案解析)
- 培训教学课件模板
- 系统架构师论文(经典范文6篇)
- 降低患者外出检查漏检率-品管圈课件
- 五年级上册生命安全教育全册教案
- 2024年中国烟花鞭炮市场调查研究报告
- 安全标准化安全培训试题附参考答案【考试直接用】
- 11.20世界慢阻肺日认识你的肺功能预防控制和消除慢阻肺课件
- 2024公安机关人民警察高级执法资格考试题(解析版)
- 加强学校食堂管理提高食品安全意识(培训课件)
评论
0/150
提交评论