2022年辽宁省皇姑区数学九年级第一学期期末复习检测模拟试题含解析_第1页
2022年辽宁省皇姑区数学九年级第一学期期末复习检测模拟试题含解析_第2页
2022年辽宁省皇姑区数学九年级第一学期期末复习检测模拟试题含解析_第3页
2022年辽宁省皇姑区数学九年级第一学期期末复习检测模拟试题含解析_第4页
2022年辽宁省皇姑区数学九年级第一学期期末复习检测模拟试题含解析_第5页
免费预览已结束,剩余18页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.直线与抛物线只有一个交点,则的值为()A. B. C. D.2.如图,在中,,,,以点为圆心,长为半径画弧,交边于点,则阴影区域的面积为()A. B. C. D.3.如果,那么下列各式中不成立的是()A.; B.; C.; D.4.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,与x轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac-b2<0;②2a-b=0;③a+b+c<0;④点(x1,y1),(x2,y2)在抛物线上,若x1<x2,则y1<y2.正确结论的个数是()A.1 B.2 C.3 D.45.在下列命题中,真命题是()A.相等的角是对顶角 B.同位角相等C.三角形的外角和是 D.角平分线上的点到角的两边相等6.如图直角三角板∠ABO=30°,直角项点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数的y1=图象上,顶点B在函数y2=的图象上,则=()A. B. C. D.7.下列实数:,其中最大的实数是()A.-2020 B. C. D.8.如图,点A,B的坐标分别为(0,8),(10,0),动点C,D分别在OA,OB上且CD=8,以CD为直径作⊙P交AB于点E,F.动点C从点O向终点A的运动过程中,线段EF长的变化情况为()A.一直不变 B.一直变大C.先变小再变大 D.先变大再变小9.一人乘雪橇沿如图所示的斜坡(倾斜角为30°)笔直滑下,滑下的距离为24米,则此人下滑的高度为()A.24 B. C.12 D.610.点点同学对数据25,43,28,2□,43,36,52进行统计分析,发现其中一个两位数的个位数被墨水涂污看不到了,则计算结果与涂污数字无关的是()A.平均数 B.中位数 C.方差 D.众数二、填空题(每小题3分,共24分)11.如图,已知反比例函数y=与一次函数y=x+1的图象交于点A(a,﹣1)、B(1,b),则不等式≥x+1的解集为________.12.如图,正方形的边长为8,点在上,交于点.若,则长为__.13.如图,正方形和正方形的边长分别为3和1,点、分别在边、上,为的中点,连接,则的长为_________.14.已知正方形的边长为1,为射线上的动点(不与点重合),点关于直线的对称点为,连接,,,.当是等腰三角形时,的值为__________.15.正六边形的中心角为_____;当它的半径为1时,边心距为_____.16.已知是方程的两个实数根,则的值是____.17.如图,分别为矩形的边,的中点,若矩形与矩形相似,则相似比等于__________.18.将抛物线向左平移2个单位得到新的抛物线,则新抛物线的解析式是______.三、解答题(共66分)19.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.20.(6分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)21.(6分)如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π).22.(8分)如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点B,E为BC中点,AC=,BC=4.(1)求证:DE为圆O的切线;(2)求阴影部分面积.23.(8分)如图,AB与⊙O相切于点B,AO及AO的延长线分别交⊙O于D、C两点,若∠A=40°,求∠C的度数.24.(8分)计算:|2﹣|+()﹣1+﹣2cos45°25.(10分)如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.26.(10分)如图,点C在以AB为直径的圆上,D在线段AB的延长线上,且CA=CD,BC=BD.(1)求证:CD与⊙O相切;(2)若AB=8,求图中阴影部分的面积.

参考答案一、选择题(每小题3分,共30分)1、D【分析】直线y=-4x+1与抛物线y=x2+2x+k只有一个交点,则把y=-4x+1代入二次函数的解析式,得到的关于x的方程中,判别式△=0,据此即可求解.【详解】根据题意得:x2+2x+k=-4x+1,

即x2+6x+(k-1)=0,

则△=36-4(k-1)=0,

解得:k=1.

故选:D.【点睛】本题考查了二次函数与一次函数的交点个数的判断,把一次函数代入二次函数的解析式,得到的关于x的方程中,判别式△>0,则两个函数有两个交点,若△=0,则只有一个交点,若△<0,则没有交点.2、C【分析】根据直角三角形的性质得到AC=2,BC=2,∠B=60,根据扇形和三角形的面积公式即可得到结论.【详解】∵在Rt△ABC中,∠ACB=90,∠A=30,AB=4,∴BC=AB=2,AC=,∠B=60,∴阴影部分的面积=S△ACB−S扇形BCD=×2×2-=,故选:C.【点睛】本题考查了扇形面积的计算,含30角的直角三角形的性质,正确的识别图形是解题的关键3、D【解析】试题分析:由题意分析可知:A中,,故不选A;B中,,故不选;C中,;D中,,故选D考点:代数式的运算点评:本题属于对代数式的基本运算规律和代数式的代入分析的求解4、C【分析】根据二次函数图像与b2-4ac的关系、对称轴公式、点的坐标及增减性逐一判断即可.【详解】解:①由图可知,将抛物线补全,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点∴b2-4ac>0∴4ac-b2<0,故①正确;②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1∴解得:∴2a-b=0,故②正确;③∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,与x轴的一个交点在(-3,0)和(-2,0)之间,∴此抛物线与x轴的另一个交点在(0,0)和(1,0)之间∵在对称轴的右侧,函数y随x增大而减小∴当x=1时,y<0,∴将x=1代入解析式中,得:y=a+b+c<0故③正确;④若点(x1,y1),(x2,y2)在对称轴右侧时,函数y随x增大而减小即若x1<x2,则y1>y2故④错误;故选C.【点睛】此题考查的是二次函数图像及性质,掌握二次函数图像及性质和各系数之间的关系是解决此题的关键.5、C【分析】根据对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质逐项判断即可.【详解】A、由对顶角的定义“如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角”可得,对顶角必相等,但相等的角未必是对顶角,此项不是真命题B、只有当两直线平行,同位角必相等,此项不是真命题C、根据内角和定理可知,任意多边形的外角和都为,此项是真命题D、由角平分线的性质可知,角平分线上的点到角的两边距离相等,此项不是真命题故选:C.【点睛】本题考查了对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质,熟记各定义和性质是解题关键.6、D【分析】设AC=a,则OA=2a,OC=a,根据直角三角形30°角的性质和勾股定理分别计算点A和B的坐标,写出A和B两点的坐标,代入解析式求出k1和k2的值,即可求的值.【详解】设AB与x轴交点为点C,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,OC=a,∴A(a,a),∵A在函数y1=的图象上,∴k1=a×a=a2,Rt△BOC中,OB=2OC=2a,∴BC==3a,∴B(a,﹣3a),∵B在函数y2=的图象上,∴k2=﹣3a×a=﹣3a2,∴=,故选:D.【点睛】此题考查反比例函数的性质,勾股定理,直角三角形的性质,设AC=a是解题的关键,由此表示出其他的线段求出k1与k2的值,才能求出结果.7、C【解析】根据正数大于0,0大于负数,正数大于负数,比较即可;【详解】∵=-2020,=-2020,=2020,=,∴,故选C.【点睛】本题主要考查了实数大小比较,掌握实数大小比较是解题的关键.8、D【解析】如图,连接OP,PF,作PH⊥AB于H.点P的运动轨迹是以O为圆心、OP为半径的⊙O,易知EF=2FH=2,观察图形可知PH的值由大变小再变大,推出EF的值由小变大再变小.【详解】如图,连接OP,PF,作PH⊥AB于H.∵CD=8,∠COD=90°,∴OP=CD=4,∴点P的运动轨迹是以O为圆心OP为半径的⊙O,∵PH⊥EF,∴EH=FH,∴EF=2FH=2,观察图形可知PH的值由大变小再变大,∴EF的值由小变大再变小,故选:D.【点睛】此题主要考查圆与几何综合,解题的关键是熟知勾股定理及直角坐标系的特点.9、C【分析】由题意运用解直角三角形的方法根据特殊三角函数进行分析求解即可.【详解】解:因为斜坡(倾斜角为30°),滑下的距离即斜坡长度为24米,所以下滑的高度为米.故选:C.【点睛】本题考查解直角三角形相关,结合特殊三角函数进行求解是解题的关键,也可利用含30°的直角三角形,其斜边是30°角所对直角边的2倍进行分析求解.10、B【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【详解】这组数据的平均数、方差和标准差都与第4个数有关,而这组数据从小到大排序后,位于中间位置的数是36,与十位数字是2个位数字未知的两位数无关,∴计算结果与涂污数字无关的是中位数.故选:B.【点睛】本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.二、填空题(每小题3分,共24分)11、0〈x〈1或x〈-2【分析】利用一次函数图象和反比例函数图象性质数形结合解不等式:【详解】解:a+1=-1,a=-2,由函数图象与不等式的关系知,0<x<1或x<-2.故答案为0<x<1或x<-2.12、6【分析】根据正方形的性质可得OC∥AB,OB=,从而证出△COQ∽△PBQ,然后根据相似三角形的性质即可求出,从而求出的长.【详解】解:∵正方形的边长为8,∴OC∥AB,OB=∴△COQ∽△PBQ∴∴∴故答案为:6.【点睛】此题考查的是正方形的性质、相似三角形的判定及性质,掌握正方形的性质、利用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.13、【分析】延长GE交AB于点O,作PH⊥OE于点H,则PH是△OAE的中位线,求得PH的长和HG的长,在Rt△PGH中利用勾股定理求解.【详解】解:延长GE交AB于点O,作PH⊥OE于点H.

则PH∥AB.

∵P是AE的中点,

∴PH是△AOE的中位线,

∴PH=OA=×(3-1)=1.

∵直角△AOE中,∠OAE=45°,

∴△AOE是等腰直角三角形,即OA=OE=2,

同理△PHE中,HE=PH=1.

∴HG=HE+EG=1+1=2.

∴在Rt△PHG中,PG=故答案是:.【点睛】本题考查了正方形的性质、勾股定理和三角形的中位线定理,正确作出辅助线构造直角三角形是关键.14、或或【分析】以B为圆心,以AB长为半径画弧,以C为圆心,以CD长为半径画弧,两弧分别交于,此时都是以CD为腰的等腰三角形;作CD的垂直平分线交弧AC于点,此时以CD为底的等腰三角形.然后分别对这三种情况进行讨论即可.【详解】如图,以B为圆心,以AB长为半径画弧,以C为圆心,以CD长为半径画弧,两弧分别交于,此时都是以CD为腰的等腰三角形;作CD的垂直平分线交弧AC于点,此时以CD为底的等腰三角形(1)讨论,如图作辅助线,连接,作交AD于点P,过点,作于Q,交BC于F,为等边三角形,正方形ABCD边长为1在四边形中∴为含30°的直角三角形(2)讨论,如图作辅助线,连接,作交AD于点P,连接BP,过点,作于Q,交AB于F,∵EF垂直平分CD∴EF垂直平分AB为等边三角形在四边形中(3)讨论,如图作辅助线,连接,过作交AD的延长线于点P,连接BP,过点,作于Q,此时在EF上,不妨记与F重合为等边三角形,在四边形中故答案为:或或.【点睛】本题主要考查等腰三角形的定义和解直角三角形,注意分情况讨论是解题的关键.15、60°【分析】首先根据题意作出图形,然后可得△AOB是等边三角形,然后由三角函数的性质,求得OH的长即可得答案.【详解】如图所示:∵六边形ABCDE是正六边形,∴∠AOB==60°,∴△AOB是等边三角形,∴OA=OB=AB=1,作OM⊥AB于点M,∵OA=1,∠OAB=60°,∴OM=OA•sin60°=1×=.【点睛】本题考查正多边形和圆及解直角三角形,正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角;正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距;熟记特殊角的三角函数值及三角函数的定义是解题关键.16、1【分析】根据一元二次方程根与系数的关系可得出,,再代入中计算即可.【详解】解:∵是方程的两个实数根,∴,,∴,故答案为:1.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟知:若是一元二次方程的两个根,则,.17、(或)【分析】根据矩形的性质可得EF=AB=CD,AE=AD=BC,根据相似的性质列出比例式,即可得出,从而求出相似比.【详解】解:∵分别为矩形的边,的中点,∴EF=AB=CD,AE=AD=BC,∵矩形与矩形相似∴∴∴∴相似比=(或)故答案为:(或).【点睛】此题考查的是求相似多边形的相似比,掌握相似多边形的性质是解决此题的关键.18、y=5(x+2)2【分析】根据二次函数平移的性质求解即可.【详解】抛物线的平移问题,实质上是顶点的平移,原抛物线y=顶点坐标为(O,O),向左平移2个单位,顶点坐标为(-2,0),根据抛物线的顶点式可求平移后抛物线的解析式为y=5(x+2)2,故答案为y=5(x+2)2.【点睛】本题主要考查二次函数平移的性质,有口诀“左加右减,上加下减”,注意灵活运用.三、解答题(共66分)19、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由题意:20=﹣x2+32x﹣2.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.20、2.1.【分析】据题意得出tanB=,即可得出tanA,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF=1x的长.【详解】解:据题意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=1x=≈2.1,∴该停车库限高2.1米.【点睛】点评:本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.21、(1)直线CD与⊙O相切(1)【解析】(1)直线CD与⊙O相切.如图,连接OD.∵OA=OD,∠DAB=45°,∴∠ODA=45°,∴∠AOD=90°.∵CD∥AB,∴∠ODC=∠AOD=90°,即OD⊥CD.又∵点D在⊙O上,直线CD与⊙O相切.(1)∵BC∥AD,CD∥AB,∴四边形ABCD是平行四边形,∴CD=AB=1.∴S梯形OBCD=,∴图中阴影部分的面积为S梯形OBCD-S扇形OBD=22、(1)证明见解析;(2)S阴影=4-2π【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S阴影=2S△ECO-S扇形COD即可求解.【详解】(1)连接DC、DO.因为AC为圆O直径,所以∠ADC=90°,则∠BDC=90°,因为E为Rt△BDC斜边BC中点,所以DE=CE=BE=BC,所以∠DCE=∠EDC,因为OD=OC,所以∠DCO=∠CDO.因为BC为圆O切线,所以BC⊥AC,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED⊥OD,所以DE为圆O的切线.(2)S阴影=2S△ECO-S扇形COD=4-2π【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.23、∠C=25°.【分析】连接OB,利用切线的性质OB⊥AB,进而可得∠BOA=50°,再利用外角等于不相邻两内角的和,即可求得∠C的度数.【详解】解:如图,连接OB,∵AB与⊙O相切于点B,∴OB⊥AB,∵∠A=40°,∴∠BOA=50°,又∵OC=OB,∴∠C=∠BOA=25°.【点睛】本题主要考查切线的性质,解决此类题目时,知切点,则连半径,若不知切点,则作垂直.24、1【分析】根据绝对值、负次数幂、二次根式、三角函数的性质计算即可.【详解】原式=2﹣+3+2﹣2×=2﹣+3+2﹣=(2+3)+(﹣+2﹣)=1+0=1.【点睛】本题考查绝对值、负次数幂、二次根式、三角函数的计算,关键在于牢记相关基础知识.25、6cm

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论