2023届广西崇左市江州区数学九上期末检测模拟试题含解析_第1页
2023届广西崇左市江州区数学九上期末检测模拟试题含解析_第2页
2023届广西崇左市江州区数学九上期末检测模拟试题含解析_第3页
2023届广西崇左市江州区数学九上期末检测模拟试题含解析_第4页
2023届广西崇左市江州区数学九上期末检测模拟试题含解析_第5页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.如图,一次函数分别与轴、轴交于点、,若sin,则的值为()A. B. C. D.3.把抛物线向右平移3个单位,再向上平移2个单位,得到抛物线().A. B. C. D.4.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定5.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是()A. B. C. D.6.如图,边长为a,b的长方形的周长为14,面积为10,则a3b+ab3的值为()A.35 B.70 C.140 D.2907.方程的解是()A.0 B.3 C.0或–3 D.0或38.如图,AB是☉O的直径,点C,D在☉O上,且,OD绕着点O顺时针旋转,连结CD交直线AB于点E,当DE=OD时,的大小不可能为()A. B. C. D.9.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差和的大小关系是()A.> B.= C.< D.无法确定10.点P(x﹣1,x+1)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.如图,⊙O是△ABC的外接圆,∠A=30°,BC=4,则⊙O的直径为___.12.一元二次方程x2﹣3x+2=0的两根为x1,x2,则x1+x2﹣x1x2=______.13.数据2,3,5,5,4的众数是____.14.抛物线y=2x2﹣4x+1的对称轴为直线__.15.已知二次函数的图象如图所示,并且关于的一元二次方:有两个不相等的实数根,下列结论:①;②;③;④,其中正确的有__________.16.写出一个过原点的二次函数表达式,可以为____________.17.若,则=___________.18.已知△ABC,D、E分别在AC、BC边上,且DE∥AB,CD=2,DA=3,△CDE面积是4,则△ABC的面积是______三、解答题(共66分)19.(10分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.20.(6分)如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为,吊灯底端B的仰角为,从C点沿水平方向前进6米到达点D,测得吊灯底端B的仰角为.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,≈1.73)21.(6分)已知反比例函数的图象过点P(-1,3),求m的值和该反比例函数的表达式.22.(8分)如图,在和中,,点为射线,的交点.(1)问题提出:如图1,若,.①与的数量关系为________;②的度数为________.(2)猜想论证:如图2,若,则(1)中的结论是否成立?请说明理由.23.(8分)已知关于x的一元二次方程(k﹣1)x2+4x+1=1.(1)若此方程的一个根为﹣1,求k的值;(2)若此一元二次方程有实数根,求k的取值范围.24.(8分)如图,抛物线过原点,且与轴交于点.(1)求抛物线的解析式及顶点的坐标;(2)已知为抛物线上一点,连接,,,求的值;(3)在第一象限的抛物线上是否存在一点,过点作轴于点,使以,,三点为顶点的三角形与相似,若存在,求出满足条件的点的坐标;若不存在,请说明理由.25.(10分)如图,在平面直角坐标系中,四边形的顶点坐标分别为,,,.动点从点出发,以每秒个单位长度的速度沿边向终点运动;动点从点同时出发,以每秒1个单位长度的速度沿边向终点运动,设运动的时间为秒,.(1)直接写出关于的函数解析式及的取值范围:_______;(2)当时,求的值;(3)连接交于点,若双曲线经过点,问的值是否变化?若不变化,请求出的值;若变化,请说明理由.26.(10分)如图所示,线段,,,,点为射线上一点,平分交线段于点(不与端点,重合).(1)当为锐角,且时,求四边形的面积;(2)当与相似时,求线段的长;(3)设,,求关于的函数关系式,并写出定义域.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据因式分解法解一元二次方程,即可求解.【详解】∵x2﹣1x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,解得:x1=0,x2=1.故选:D.【点睛】本题主要考查一元二次方程的解法,掌握因式分解法解方程,是解题的关键.2、D【分析】由解析式求得图象与x轴、y轴的交点坐标,再由sin,求出AB,利用勾股定理求出OA=,由此即可利用OA=1求出k的值.【详解】∵,∴当x=0时,y=-k,当y=0时,x=1,∴B(0,-k),A(1,0),∵sin,∴,∵OB=-k,∴AB=,∴OA==∴=1,∴k=,故选:D.【点睛】此题考查一次函数的性质,勾股定理,三角函数,解题中综合运用,题中求出AB,利用勾股定理求得OA的长是解题的关键.3、D【分析】直接根据平移规律(左加右减,上加下减)作答即可.【详解】将抛物线y=x2+1向右平移1个单位,再向上平移2个单位后所得抛物线解析式为y=(x-1)2+1.

故选:D.【点睛】此题考查函数图象的平移,解题关键在于熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.4、A【解析】∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y₁)、B(3,y₂)都位于第一象限,且1<3,∴y₁>y₂,故选A.5、B【分析】画树状图得出所有等可能结果,从找找到符合条件得结果数,在根据概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的有6种结果,所以第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率为.故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6、D【分析】由题意得,将所求式子化简后,代入即可得.【详解】由题意得:,即又代入可得:原式故选:D.【点睛】本题考查了长方形的周长和面积公式、多项式的因式分解、以及完全平方公式,熟练掌握相关内容是解题的关键.7、D【解析】运用因式分解法求解.【详解】由得x(x-3)=0所以,x1=0,x2=3故选D【点睛】掌握因式分解法解一元二次方程.8、C【分析】分三种情况求解即可:①当点D与点C在直径AB的异侧时;②当点D在劣弧BC上时;③当点D在劣弧AC上时.【详解】①如图,连接OC,设,则,,∵,,在中,,,∴,;②如图,连接OC,设,则,,,,在中,,,∴,;(3)如图,设,则,,,,由外角可知,,,,,故选C.【点睛】本题考查了圆的有关概念,旋转的性质,等腰三角形的性质,三角形外角的性质,以及分类讨论的数学思想,分类讨论是解答本题的关键.9、A【解析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲.【详解】解:由题意可知,乙的数据比甲稳定,所以>故选:A【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.10、D【解析】本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1)x-1>0,x+1>0,解得x>1,故x-1>0,x+1>0,点在第一象限;(2)x-1<0,x+1<0,解得x<-1,故x-1<0,x+1<0,点在第三象限;(3)x-1>0,x+1<0,无解;(4)x-1<0,x+1>0,解得-1<x<1,故x-1<0,x+1>0,点在第二象限.故点P不能在第四象限,故选D.二、填空题(每小题3分,共24分)11、1【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为1.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为1,故答案为:1.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.12、1【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,

所以x1+x2-x1x2=3-2=1.

故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.13、1【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵1是这组数据中出现次数最多的数据,∴这组数据的众数为1.故答案为:1.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.14、x=1【详解】解:∵y=2x2﹣4x+1=2(x﹣1)2﹣1,∴对称轴为直线x=1,故答案为:x=1.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).15、③【分析】①利用可以用来判定二次函数与x轴交点个数,即可得出答案;②根据图中当时的值得正负即可判断;③由函数开口方向可判断的正负,根据对称轴可判断的正负,再根据函数与轴交点可得出的正负,即可得出答案;④根据方程可以看做函数,就相当于函数(a0)向下平移个单位长度,且与有两个交点,即可得出答案.【详解】解:①∵函数与轴有两个交点,∴,所以①错误;②∵当时,,由图可知当,,∴,所以②错误;③∵函数开口向上,∴,∵对称轴,,∴,∵函数与轴交于负半轴,∴,∴,所以③正确;④方程可以看做函数当y=0时也就是与轴交点,∵方程有两个不相等的实数根,∴函数与轴有两个交点∵函数就相当于函数向下平移个单位长度∴由图可知当函数向上平移大于2个单位长度时,交点不足2个,∴,所以④错误.正确答案为:③【点睛】本题考查了二次函数与系数的关系:可以用来判定二次函数与x轴交点的个数,当时,函数与x轴有2个交点;当时,函数与x轴有1个交点;当时,函数与x轴没有交点.;二次函数系数中决定开口方向,当时,开口向上,当时,开口向下;共同决定对称轴的位置,可以根据“左同右异”来判断;决定函数与轴交点.16、y=1x1【分析】抛物线过原点,因此常数项为0,可据此写出符合条件的二次函数的表达式.【详解】解:设抛物线的解析式为y=ax1+bx+c(a≠0);∵抛物线过原点(0,0),

∴c=0;

当a=1,b=0时,y=1x1.故答案是:y=1x1.(答案不唯一)【点睛】主要考查了二次函数图象上的点与二次函数解析式的关系.要求掌握二次函数的性质,并会利用性质得出系数之间的数量关系.17、【分析】把所求比例形式进行变形,然后整体代入求值即可.【详解】,,;故答案为.【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键.18、25【分析】根据DE∥AB得到△CDE∽△CAB,再由CD和DA的长度得到相似比,从而确定△ABC的面积.【详解】解:∵DE∥AB,∴△CDE∽△CAB,∵CD=2,DA=3,∴,又∵△CDE面积是4,∴,即,∴△ABC的面积为25.【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的面积之比等于相似比的平方.三、解答题(共66分)19、(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.20、吊灯AB的长度约为1.1米.【分析】延长CD交AB的延长线于点E,构建直角三角形,分别在两个直角三角形△BDE和△AEC中利用正弦和正切函数求出AE长和BE长,即可求解.【详解】解:延长CD交AB的延长线于点E,则∠AEC=90°,∵∠BDE=60°,∠DCB=30°,∴∠CBD=60°﹣30°=30°,∴∠DCB=∠CBD,∴BD=CD=6(米)在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE═6×sin60°=3≈5.19(米),DE=BD=3(米),在Rt△AEC中,tan∠ACE=,∴AE=CE•tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),∴吊灯AB的长度约为1.1米.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.21、2;.【分析】把点P的坐标代入函数解析式求得m的值即可【详解】解:把点P(-1,3)代入,得.解得.把m=2代入,得,即.∴反比例函数的表达式为.【点睛】本题考查了待定系数法确定函数关系式,反比例函数图象上点的坐标特征.难度不大,熟悉函数图象的性质即可解题.22、(1);;(2)成立,理由见解析【分析】(1)①依据等腰三角形的性质得到AB=AC,AD=AE,依据同角的余角相等得到∠DAB=∠CAE,然后依据“SAS”可证明△ADB≌△AEC,最后,依据全等三角形的性质可得到∠ABD=∠ACE;②由三角形内角和定理可求∠BPC的度数;(2)由30°角的性质可知,,从而可得,进而可证,由相似三角形的性质和三角形内角和即可得出结论;【详解】(1)①∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,∠ABC=∠ACB=45°,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,②∵∠BPC=180°-∠ABD-∠ABC-∠BCP=180°-45°-(∠BCP+∠ACE),∴∠BPC=90°,故答案为:;(2)(1)中结论成立,理由:在中,,∴.在中,,∴,∴,∵,∴,∴.∴;∵∴.【点睛】本题是三角形综合题,主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、含30°角的直角三角形的性质,以及相似三角形的性质和判定,证明得是解题的关键.23、(2);(2)且.【分析】(2)把x=﹣2代入原方程求k值;(2)一元二次方程的判别式是非负数,且二次项系数不等于2.【详解】解:(2)将x=﹣2代入一元二次方程(k﹣2)x2+4x+2=2得,(k﹣2)﹣4+2=2,解得k=4;(2)∵若一元二次方程(k﹣2)x2+4x+2=2有实数根,∴△=26﹣4(k﹣2)≥2,且k﹣2≠2解得k≤5且k﹣2≠2,即k的取值范围是k≤5且k≠2.24、(1)抛物线的解析式为;顶点的坐标为;(2)3;(3)点的坐标为或.【分析】(1)用待定系数法即可求出抛物线的解析式,进而即可求出顶点坐标;(2)先将点C的横坐标代入抛物线的解析式中求出纵坐标,根据B,C的坐标得出,,从而有,最后利用求解即可;(3)设为.由于,所以当以,,三点为顶点的三角形与相似时,分两种情况:或,分别建立方程计算即可.【详解】解:(1)∵抛物线过原点,且与轴交于点,∴,解得.∴抛物线的解析式为.∵,∴顶点的坐标为.(2)∵在抛物线上,∴.作轴于,作轴于,则,,∴,.∴.∵,.∴.(3)假设存在.设点的横坐标为,则为.由于,所以当以,,三点为顶点的三角形与相似时,有或∴或.解得或.∴存在点,使以,,三点为顶点的三角形与相似.∴点的坐标为或.【点睛】本题主要考查二次函数与几何综合,掌握二次函数的图象和性质,相似三角形的性质是解题的关键.25、(1);(2),;(3)经过点的双曲线的值不变.值为.【分析】(1)过点P作PE⊥BC于点E,依题意求得P、Q的坐标,进而求得PE、EQ的长,再利用勾股定理即可求得答案,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论