版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列图形中,是中心对称图形的是()A. B. C. D.2.如图,中,,在同一平面内,将绕点旋转到的位置,使得,则旋转角等于()A. B. C. D.3.如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:54.如图,已知抛物线与轴分别交于、两点,将抛物线向上平移得到,过点作轴交抛物线于点,如果由抛物线、、直线及轴所围成的阴影部分的面积为,则抛物线的函数表达式为()A. B.C. D.5.一个不透明的布袋里装有8个只有颜色不同的球,其中2个红球,6个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为()A. B. C. D.6.求二次函数的图象如图所示,其对称轴为直线,与轴的交点为、,其中,有下列结论:①;②;③;④;⑤;其中,正确的结论有()A.5 B.4 C.3 D.27.有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A. B. C. D.8.如图所示,该几何体的俯视图是()A. B. C. D.9.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.10.如图,在△ABC中,EF∥BC,,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.1311.如图,是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第30个“上”字需用多少枚棋子()A.122 B.120 C.118 D.11612.如图,、两点在双曲线上,分别经过点、两点向、轴作垂线段,已知,则()A.6 B.5 C.4 D.3二、填空题(每题4分,共24分)13.写出一个过原点的二次函数表达式,可以为____________.14.请写出一个一元二次方程,使它的两个根分别为2,﹣2,这个方程可以是_____.15.已知⊙O的内接正六边形的边心距为1.则该圆的内接正三角形的面积为_____.16.对于实数,定义运算“◎”如下:◎.若◎,则_____.17.步步高超市某种商品为了去库存,经过两次降价,零售价由100元降为64元.则平均每次降价的百分率是____________.18.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是.三、解答题(共78分)19.(8分)在正方形ABCD中,M是BC边上一点,且点M不与B、C重合,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;(2)①连接DP,若点P,Q,D恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为:.20.(8分)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(1)试判断上述方程根的情况.(2)已知△ABC的两边AB、AC的长是关于上述方程的两个实数根,BC的长为5,当k为何值时,△ABC是等腰三角形.21.(8分)如图,已知在△ABC中,AD是∠BAC平分线,点E在AC边上,且∠AED=∠ADB.求证:(1)△ABD∽△ADE;(2)AD2=AB·AE.22.(10分)如图,点E,F,G,H分别位于边长为a的正方形ABCD的四条边上,四边形EFGH也是正方形,AG=x,正方形EFGH的面积为y.(1)当a=2,y=3时,求x的值;(2)当x为何值时,y的值最小?最小值是多少?23.(10分)“十一”黄金周期间,西安旅行社推出了“西安红色游”项目团购活动,收费标准如下:若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元(每人收费不低于700元),设有x人参加这一旅游项目的团购活动.(1)当x=35时,每人的费用为______元.(2)某社区居民组团参加该活动,共支付旅游费用27000元,求该社区参加此次“西安红色游”的人数.24.(10分)如图,在某建筑物上,挂着“缘分天注定,悠然在潜山”的宣传条幅,小明站在点处,看条幅顶端,测得仰角为,再往条幅方向前行30米到达点处,看到条幅顶端,测得仰角为,求宣传条幅的长.(注:不计小明的身高,结果精确到1米,参考数据,)25.(12分)如图,抛物线l:y=﹣x2+bx+c(b,c为常数),其顶点E在正方形ABCD内或边上,已知点A(1,2),B(1,1),C(2,1).(1)直接写出点D的坐标_____________;(2)若l经过点B,C,求l的解析式;(3)设l与x轴交于点M,N,当l的顶点E与点D重合时,求线段MN的值;当顶点E在正方形ABCD内或边上时,直接写出线段MN的取值范围;(4)若l经过正方形ABCD的两个顶点,直接写出所有符合条件的c的值.26.已知关于的方程:.(1)求证:不论取何实数,该方程都有两个不相等的实数根.(2)设方程的两根为,,若,求的值.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据中心对称图形的定义:把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,逐一判断即可.【详解】解:A选项不是中心对称图形,故本选项不符合题意;B选项不是中心对称图形,故本选项不符合题意;C选项不是中心对称图形,故本选项不符合题意;D选项是中心对称图形,故本选项符合题意;故选D.【点睛】此题考查的是中心对称图形的识别,掌握中心对称图形的定义是解决此题的关键.2、B【分析】由平行线的性质得出,由旋转的性质可知,则有,然后利用三角形内角和定理即可求出旋转角的度数.【详解】由旋转的性质可知所以旋转角等于40°故选:B.【点睛】本题主要考查平行线的性质,等腰三角形的性质和旋转的性质,掌握旋转角的概念及平行线的性质,等腰三角形的性质和旋转的性质是解题的关键.3、D【解析】过点D作DF∥CA交BE于F,如图,利用平行线分线段成比例定理,由DF∥CE得到==,则CE=DF,由DF∥AE得到==,则AE=4DF,然后计算的值.【详解】如图,过点D作DF∥CA交BE于F,∵DF∥CE,∴=,而BD:DC=2:3,BC=BD+CD,∴=,则CE=DF,∵DF∥AE,∴=,∵AG:GD=4:1,∴=,则AE=4DF,∴=,故选D.【点睛】本题考查了平行线分线段成比例、平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例,熟练掌握相关知识是解题的关键.4、A【分析】利用二次函数图象上点的坐标特征求出抛物线与x轴交点的横坐标,由阴影部分的面积等于矩形OABC的面积可求出AB的长度,再利用平移的性质“左加右减,上加下减”,即可求出抛物线的函数表达式.【详解】当y=0时,有(x−2)2−2=0,解得:x1=0,x2=1,∴OA=1.∵S阴影=OA×AB=16,∴AB=1,∴抛物线的函数表达式为y=(x−2)2−2+1=故选A.【点睛】本题考查了抛物线与x轴的交点、矩形的面积以及二次函数图形与几何变换,观察图形,找出阴影部分的面积等于矩形OABC的面积是解题的关键.5、A【解析】用白球的个数除以球的总个数即为所求的概率.【详解】解:因为一共有8个球,白球有6个,所以从布袋里任意摸出1个球,摸到白球的概率为,故选:A.【点睛】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.6、C【分析】由抛物线开口方向得a>0,由抛物线的对称轴为直线得>0,由抛物线与y轴的交点位置得c<0,则abc<0;由于抛物线与x轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<<-2;抛物线的对称轴为直线,且c<-1,时,;抛物线开口向上,对称轴为直线,当时,,当得:,且,∴,即;对称轴为直线得,由于时,,则0,所以0,解得,然后利用得到.【详解】∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线,∴b=2a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①错误;∵抛物线与x轴一个交点在点(0,0)与点(1,0)之间,而对称轴为,由于抛物线与x轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<<-2,所以②正确;∵抛物线的对称轴为直线,且c<-1,∴当时,,所以③正确;∵抛物线开口向上,对称轴为直线,∴当时,,当代入得:,∵,∴,即,所以④错误;∵对称轴为直线,∴,∵由于时,,∴0,所以0,解得,根据图象得,∴,所以⑤正确.所以②③⑤正确,故选C.【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x轴、y轴的交点,二次函数y=ax2+bx+c(a≠0),a决定抛物线开口方向;c的符号由抛物线与y轴的交点的位置确定;b的符号由a及对称轴的位置确定;当x=1时,y=;当时,.7、B【详解】试题分析:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P=.故选B.考点:列表法与树状图法求概率.8、C【解析】从上往下看,总体上是一个矩形,中间隔着一个竖直的同宽的小矩形,而挖空后长方体内的剩余部分用虚线表示为左右对称的两条靠近宽的线,选项C中图象便是俯视图.故选:C.9、B【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.10、A【分析】由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.【详解】∵,∴.又∵EF∥BC,∴△AEF∽△ABC.∴.∴1S△AEF=S△ABC.又∵S四边形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S△ABC=1.故选A.11、A【分析】可以将上字看做有四个端点每次每个端点增加一个,还有两个点在里面不发生变化.找到其规律即可解答.【详解】第1个“上”字中的棋子个数是6;第2个“上”字中的棋子个数是10;第3个“上”字中的棋子个数是14;进一步发现规律:第n个“上”字中的棋子个数是(4n+2).所以第30个“上”字需要4×30+2=122枚棋子.
故选:A.【点睛】此题考查规律型:图形的变化,解题关键是通过归纳与总结,得到其中的规律.12、C【解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线的系数k,由此即可求出S1+S1.【详解】解:∵点A、B是双曲线上的点,分别经过A、B两点向x轴、y轴作垂线段,
则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=2,
∴S1+S1=2+2-1×1=2.
故选:C.【点睛】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.二、填空题(每题4分,共24分)13、y=1x1【分析】抛物线过原点,因此常数项为0,可据此写出符合条件的二次函数的表达式.【详解】解:设抛物线的解析式为y=ax1+bx+c(a≠0);∵抛物线过原点(0,0),
∴c=0;
当a=1,b=0时,y=1x1.故答案是:y=1x1.(答案不唯一)【点睛】主要考查了二次函数图象上的点与二次函数解析式的关系.要求掌握二次函数的性质,并会利用性质得出系数之间的数量关系.14、x2﹣4=0【分析】根据一元二次方程的根与系数的关系,即可求出答案【详解】设方程x2﹣mx+n=0的两根是2,﹣2,∴2+(﹣2)=m,2×(﹣2)=n,∴m=0,n=﹣4,∴该方程为:x2﹣4=0,故答案为:x2﹣4=0【点睛】本题主要考查一元二次方程的根与系数的关系,掌握一元二次方程ax2+bx+c=0的两个根x1,x2与系数的关系:x1+x2=,x1x2=,是解题的关键.15、4【分析】作出⊙O及内接正六边形ABCDEF,连接OC、OB,过O作ON⊥CE于N,易得△COB是等边三角形,利用三角函数求出OC,ON,CN,从而得到CE,再求内接正三角形ACE的面积即可.【详解】解:如图所示,连接OC、OB,过O作ON⊥CE于N,∵多边形ABCDEF是正六边形,∴∠COB=60°,∵OC=OB,∴△COB是等边三角形,∴∠OCM=60°,∴OM=OC•sin∠OCM,∴OC=.∵∠OCN=30°,∴ON=OC=,CN=1,∴CE=1CN=4,∴该圆的内接正三角形ACE的面积=,故答案为:4.【点睛】本题考查圆的内接多边形与三角函数,利用边心距求出圆的半径是解题的关键.16、-3或4【分析】利用新定义得到,整理得到,然后利用因式分解法解方程.【详解】根据题意得,,,,或,所以.故答案为或.【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.17、20%【分析】设平均每次降价的百分率是x,根据“经过两次降价,零售价由100元降为64元”,列出一元二次方程,求解即可.【详解】设平均每次降价的百分率是x,根据题意得:100(1﹣x)2=64,解得:x1=0.2,x2=1.8(舍去),即平均每次降价的百分率是20%.故答案为:20%.【点睛】本题考查了一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题.18、π﹣1.【详解】解:在Rt△ACB中,AB==,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC==π﹣1.故答案为π﹣1.考点:扇形面积的计算.三、解答题(共78分)19、(1)详见解析;(1)①详见解析;②BP=AB.【分析】(1)根据要求画出图形即可;(1)①连接BD,如图1,只要证明△ADQ≌△ABP,∠DPB=90°即可解决问题;②结论:BP=AB,如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.由△ADQ≌△ABP,△ANQ≌△ACP,推出DQ=PB,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;【详解】(1)解:补全图形如图1:(1)①证明:连接BD,如图1,∵线段AP绕点A顺时针旋转90°得到线段AQ,∴AQ=AP,∠QAP=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在Rt△BPD中,DP1+BP1=BD1,又∵DQ=BP,BD1=1AB1,∴DP1+DQ1=1AB1.②解:结论:BP=AB.理由:如图3中,连接AC,延长CD到N,使得DN=CD,连接AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴20、(1)方程有两个不相等的实数根;(2)3或1.【分析】(1)利用一元二次方程根的判别式判断即可;(2)用k表示出方程的两个根,分AB=BC和AC=BC两种情况,分别求出k值即可.【详解】(1)∵方程x2﹣(2k+3)x+k2+3k+2=0,∴△=b2﹣1ac=(2k+3)2﹣1(k2+3k+2)=1k2+12k+9﹣1k2﹣12k﹣8=1>0,∴方程有两个不相等的实数根;(2)x2﹣(2k+3)x+k2+3k+2=0,x1=k+1,x2=k+2,当AB=k+1,AC=k+2,BC=5,由(1)知AB≠AC,故有两种情况:(i)当AC=BC=5时,k+2=5,即k=3;(ii)当AB=BC=5时,k+1=5,即k=1.故当k为3或1时,△ABC是等腰三角形.【点睛】本题考查了一元二次方程的根的判别式与根的关系,△>0时,方程有两个不相等的实数根;△=0时,方程有两个相等的实数根;△<0时,方程没有实数根.熟练掌握一元二次方程的根的判别式与根的关系是解题关键.21、(1)、证明过程见解析;(2)、证明过程见解析【分析】试题分析:(1)、根据角平分线得出∠BAD=∠DAE,结合∠AED=∠ADB得出相似;(2)、根据相似得出答案.【详解】试题解析:(1)、∵AD是∠BAC平分线∴∠BAD=∠DAE又∵∠AED=∠ADB∴△ABD∽△ADE(2)、∵△ABD∽△ADE,∴∴AD2=AB·AE.考点:相似三角形的判定与性质22、(1)x=;(1)当x=a(即E在AB边上的中点)时,正方形EFGH的面积最小,最小的面积为a1.【分析】(1)设正方形ABCD的边长为a,AE=x,则BE=a﹣x,易证△AHE≌△BEF≌△CFG≌△DHG,再利用勾股定理求出EF的长,进而得到正方形EFGH的面积;(1)利用二次函数的性质即可求出面积的最小值.【详解】解:设正方形ABCD的边长为a,AE=x,则BE=a﹣x,∵四边形EFGH是正方形,∴EH=EF,∠HEF=90°,∴∠AEH+∠BEF=90°,∵∠AEH+∠AHE=90°,∴∠AHE=∠BEF,在△AHE和△BEF中,,∴△AHE≌△BEF(AAS),同理可证△AHE≌△BEF≌△CFG≌△DHG,∴AE=BF=CG=DH=x,AH=BE=CF=DG=a﹣x∴EF1=BE1+BF1=(a﹣x)1+x1=1x1﹣1ax+a1,∴正方形EFGH的面积y=EF1=1x1﹣1ax+a1,当a=1,y=3时,1x1﹣4x+4=3,解得:x=;(1)∵y=1x1﹣1ax+a1=1(x﹣a)1+a1,即:当x=a(即E在AB边上的中点)时,正方形EFGH的面积最小,最小的面积为a1.【点睛】本题考查了二次函数的应用,正方形的性质、全等三角形的判定和性质以及二次函数的性质,题目的综合性较强,难度中等.23、(1)800;(2)该社区共有30人参加此次“西安红色游”【分析】(1)当x=35时,根据“若总人数不超过25人,每人收费1000元;若总人数超过25人,每增加1人,每人收费降低20元,(但每人收费不低于700元)”可得每人的费用为1000-(35-25)×20=800元;(2)该社区共支付旅游费用27000元,显然人数超过了25人,设该社区共有x人参加此次“西安红色游”,则人均费用为[1000-20(x-25)]元,根据旅游费=人均费用×人数,列一元二次方程求x的值,结果要满足上述不等式.【详解】解:(1)当x=35时,每人的费用为1000-(35-25)×20=800(元).(2)设该社区共有x人参加此次“西安红色游”,∵1000×25=25000元<27000元,∴x>25.由题意,得x[1000-20(x-25)]=27000,整理,得x2-75x+1350=0,解得x1=30,x2=45.检验:当x=30时,人均旅游费用为1000-20×(30-25)=900元>700元,符合题意;当x=45时,人均旅游费用为1000-20×(45-25)=600元<700元,不合题意,舍去,∴x=30.答:该社区共有30人参加此次“西安红色游”.【点睛】本题考查了一元二次方程的应用.关键是设旅游人数,表示人均费用,根据旅游费=人均费用×人数,列一元二次方程.24、宣传条幅BC的长约为26米.【分析】先根据三角形的外角性质得出,再根据等腰三角形的判定可得BE的长,然后利用的正弦值求解即可.【详解】由题意得米(米)在中,,即(米)答:宣传条幅BC的长约为26米.【点睛】本题考查了等腰三角形的判定、解直角三角形等知识点,熟记正弦值的定义及特殊角的正弦值是解题关键.25、(1)D点的坐标为(1,1);(1)y=﹣x1+3x﹣1;(3)1≤MN≤;(4)所有符合条件的c的值为﹣1,1,﹣1.【分析】(1)根据正方形的性质,可得D点的坐标;(1)根据待定系数法,可得函数解析式;(3)根据顶点横坐标纵坐标越大,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论