北京市丰台区长辛店第一中学2022年数学九上期末教学质量检测模拟试题含解析_第1页
北京市丰台区长辛店第一中学2022年数学九上期末教学质量检测模拟试题含解析_第2页
北京市丰台区长辛店第一中学2022年数学九上期末教学质量检测模拟试题含解析_第3页
北京市丰台区长辛店第一中学2022年数学九上期末教学质量检测模拟试题含解析_第4页
北京市丰台区长辛店第一中学2022年数学九上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在单词mathematics(数学)中任意选择一个字母,字母为“m”的概率为()A. B. C. D.2.对于反比例函数,下列说法不正确的是()A.图像分布在第一、三象限 B.当时,随的增大而减小C.图像经过点 D.若点都在图像上,且,则3.据路透社报道,中国华为技术有限公司推出新的服务器芯片组,此举正值中国努力提高芯片制造能力,并减少对进口芯片的严重依赖.华为技术部门还表示,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积.其中0.00000065用科学记数法表示为()A. B. C. D.4.已知一个正多边形的一个外角为锐角,且其余弦值为,那么它是正()边形.A.六 B.八 C.十 D.十二5.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>06.在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个 B.5个 C.不足4个 D.6个或6个以上7.已知点A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣ C.y=x2 D.y=﹣x28.某企业五月份的利润是25万元,预计七月份的利润将达到49万元.设平均月增长率为x,根据题意可列方程是()A.25(1+x%)2=49 B.25(1+x)2=49C.25(1+x2)=49 D.25(1-x)2=499.二次函数y=ax2+bx+c的y与x的部分对应值如下表:x…0134…y…242﹣2…则下列判断中正确的是()A.抛物线开口向上 B.抛物线与y轴交于负半轴C.当x=﹣1时y>0 D.方程ax2+bx+c=0的负根在0与﹣1之间10.如图,在平行四边形中,、相交于点,点是的中点,连接并延长交于点,已知的面积为4,则的面积为()A.12 B.28 C.36 D.38二、填空题(每小题3分,共24分)11.设m,n分别为一元二次方程x2+2x-2020=0的两个实数根,则m2+3m+n=______.12.若两个相似三角形的周长比为2:3,则它们的面积比是_________.13.如图,D是反比例函数(k<0)的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为_______.14.正六边形的中心角等于______度.15.若、为关于x的方程(m≠0)的两个实数根,则的值为________.16.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图(1)位置,第二次旋转至图(2)位置…,则正方形铁片连续旋转2018次后,点P的纵坐标为_________.17.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是__________.18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0)、B(0,4),则点B2020的横坐标为_____.三、解答题(共66分)19.(10分)如图,已知反比例函数与一次函数的图象在第一象限相交于点.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点的坐标,并根据图像写出使反比例函数的值大于一次函数的值的取值范围.20.(6分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?这个最大利润是多少?21.(6分)如图,某校数学兴趣小组为测量该校旗杆及笃志楼的高度,先在操场的处用测角仪测得旗杆顶端的仰角为,此时笃志楼顶端恰好在视线上,再向前走到达处,用该测角仪又测得笃志楼顶端的仰视角为.已知测角仪高度为,点、、在同一水平线上.(1)求旗杆的高度;(2)求笃志楼的高度(精确到).(参考数据:,)22.(8分)自2020年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2020年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线表示.(1)________;(2)求图1表示的售价与时间的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?23.(8分)科研人员在测试火箭性能时,发现火箭升空高度与飞行时间之间满足二次函数.(1)求该火箭升空后飞行的最大高度;(2)点火后多长时间时,火箭高度为.24.(8分)抛物线与轴交于两点(点在点的左侧),与轴交于点.已知,抛物线的对称轴交轴于点.(1)求出的值;(2)如图1,连接,点是线段下方抛物线上的动点,连接.点分别在轴,对称轴上,且轴.连接.当的面积最大时,请求出点的坐标及此时的最小值;(3)如图2,连接,把按照直线对折,对折后的三角形记为,把沿着直线的方向平行移动,移动后三角形的记为,连接,,在移动过程中,是否存在为等腰三角形的情形?若存在,直接写出点的坐标;若不存在,请说明理由.25.(10分)如图,在平面直角坐标中,反比例函数的图象经过点,反比例函数的图象经过点,作直线分别交于两点,已知.(1)求反比例函数的解析式;(2)求的面积.26.(10分)如图,抛物线y=﹣x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分别交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据概率公式进行计算即可.【详解】在单词“mathematics”中,共11个字母,其中有2个字母“m”,故从中任意选择一个字母,这个字母为“m”的概率是.故选:B.【点睛】本题考查概率的计算,熟记概率公式是解题关键.2、D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B、k=8>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C、∵,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意;D、点A(x1,y1)、B(x2、y2)都在反比例函数的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选D.【点睛】本题考查了反比例函数的性质,对于反比例函数,(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.3、B【分析】把一个数表示成的形式,其中,n是整数,这种记数方法叫做科学记数法,根据科学记数法的要求即可解答.【详解】0.00000065=,故选:B.【点睛】此题考察科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,整数等于原数左起第一个非零数字前0的个数,按此方法即可正确求解.4、B【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【详解】∵一个外角为锐角,且其余弦值为,∴外角=45°,∴360÷45=1.故它是正八边形.故选:B.【点睛】本题考查根据正多边形的外角判断边数,根据余弦值得到外角度数是解题的关键.5、A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.6、D【解析】由取出红球的可能性大知红球的个数比白球个数多,据此可得答案.【详解】解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,∴红球的个数比白球个数多,∴红球个数满足6个或6个以上,故选:D.【点睛】本题主要考查可能性大小,只要在总情况数目相同的情况下,比较其包含的情况总数即可.7、D【分析】可以采用排除法得出答案,由点A(-2,m),B(2,m)关于y轴对称,于是排除选项A、B;再根据B(2,m),C(3,m﹣n)(n>0)的特点和二次函数的性质,可知抛物线在对称轴的右侧呈下降趋势,所以抛物线的开口向下,即a<0.【详解】解:∵A(-2,m),B(2,m)关于y轴对称,且在同一个函数的图像上,

而,的图象关于原点对称,∴选项A、B错误,只能选C、D,,

∵,在同一个函数的图像上,而y=x2在y轴右侧呈上升趋势,∴选项C错误,而D选项符合题意.故选:D.【点睛】本题考查正比例函数、反比例函数、二次函数的图象和性质,熟悉各个函数的图象和性质是解题的基础,发现点的坐标关系是解题的关键.8、B【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设利润的年平均增长率为x,然后根据已知条件可得出方程.【详解】解:依题意得七月份的利润为25(1+x)2,

∴25(1+x)2=1.

故选:B.【点睛】本题考查了一元二次方程的应用,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.9、D【分析】根据表中的对应值,求出二次函数的表达式即可求解.【详解】解:选取,,三点分别代入得解得:∴二次函数表达式为∵,抛物线开口向下;∴选项A错误;∵函数图象与的正半轴相交;∴选项B错误;当x=-1时,;∴选项C错误;令,得,解得:,∵,方程的负根在0与-1之间;故选:D.【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.10、A【分析】根据平行是四边形的性质得到AD∥BC,OA=OC,得到△AFE∽△CEB,根据点E是OA的中点,得到,△AEB的面积=△OEB的面积,计算即可.【详解】∵四边形ABCD是平行四边形,

∴AD∥BC,OA=OC,

∴△AFE∽△CEB,∴∵点E是OA的中点,

∴,,∴,∴,∴.故选:A.【点睛】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.二、填空题(每小题3分,共24分)11、2018.【解析】根据题意得.m2+3m+n=2020+m+n,再根据m,n分别为一元二次方程x2+2x-2020=0的两个实数根,得m+n=-2,带入m2+3m+n计算即可.【详解】解:∵m为一元二次方程x2+2x-2020=0的实数根,∴m2+2m-2020=0,即m2=-2m+2020,∴m2+3m+n=-2m+2020+3m+n=2020+m+n,∵m,n分别为一元二次方程x2+2x-2020=0的两个实数根,∴m+n=-2,∴m2+3m+n=2020-2=2018.【点睛】本题考查了一元二次方程的应用,解题的关键是熟练的掌握一元二次方程的应用.12、4∶1【解析】试题解析:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:1.考点:相似三角形的性质.13、-1【详解】解:∵的图象经过点C,∴C(0,1),将点C代入一次函数y=-x+m中,得m=1,∴y=-x+1,令y=0得x=1,∴A(1,0),∴S△AOC=×OA×OC=1,∵四边形DCAE的面积为4,∴S矩形OCDE=4-1=1,∴k=-1故答案为:-1.14、60°【分析】根据正n边形中心角的公式直接求解即可.【详解】解:正六边形的圆心角等于一个周角,即为,正六边形有6个中心角,所以每个中心角=故答案为:60°【点睛】本题考查正六边形,解答本题的关键是掌握正六边形的性质,熟悉正六边形的中心角的概念15、-2【分析】根据根与系数的关系,,代入化简后的式子计算即可.【详解】∵,,∴,故答案为:【点睛】本题主要考查一元二次方程ax2+bx+c=0的根与系数关系,熟记:两根之和是,两根之积是,是解题的关键.16、1【分析】由旋转方式和正方形性质可知点P的位置4次一个循环,首先根据旋转的性质求出P1~P5的坐标,探究规律后,再利用规律解决问题.【详解】解:∵顶点A的坐标为(3,0),点P(1,2),∴第一次旋转90°后,对应的P1(5,2),

第二次P2(8,1),

第三次P3(10,1),

第四次P4(13,2),

第五次P5(17,2),

发现点P的位置4次一个循环,

∵2018÷4=504余2,

P2018的纵坐标与P2相同为1,故答案为:1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.17、【分析】从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,得出组成的两位数总个数及能被3整除的数的个数,求概率.【详解】∵从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,共有6种情况,它们分别是56、57、65、67、75、76,其中能被3整除的有57、75两种,∴组成两位数能被3整除的概率为:故答案为:【点睛】本题考查的是直接用概率公式求概率问题,找对符合条件的个数和总个数是关键.18、1【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差10个单位长度,根据这个规律可以求解.【详解】由图象可知点B2020在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB,∴OA+AB1+B1C2=++4=10,∴B2的横坐标为:10,同理:B4的横坐标为:2×10=20,B6的横坐标为:3×10=30,∴点B2020横坐标为:1.故答案为:1.【点睛】本题考查了点的坐标规律变换,通过图形旋转,找到所有B点之间的关系是本题的关键.题目难易程度适中,可以考察学生观察、发现问题的能力.三、解答题(共66分)19、(1),;(2)x<-2,或0<x<1【分析】(1)把A(1,-k+4)代入解析式,即可求出k的值;把求出的A点坐标代入一次函数的解析式,即可求出b的值;从而求出这两个函数的表达式;

(2)将两个函数的解析式组成方程,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【详解】解:(1)由题意,得,∴k=2,∴A(1,2),2=b+1∴b=1,反比例函数表达式为:,一次函数表达式为:.(2)又由题意,得,,解得∴B(-2,-1),∴当x<-2,或0<x<1时,反比例函数大于一次函数的值.【点睛】本题考查了一次函数与反比例函数的综合,能正确看图象是解题的关键.20、定价为57.5元时,所获利润最大,最大利润为6125元.【分析】设所获利润为元,每件降价元,先求出降价后的每件利润和销量,再根据“利润=每件利润销量”列出等式,然后根据二次函数的性质求解即可.【详解】设所获利润为元,每件降价元则降价后的每件利润为元,每星期销量为件由利润公式得:整理得:由二次函数的性质可知,当时,y随x的增大而增大;当时,y随x的增大而减小故当时,y取得最大值,最大值为6125元即定价为:元时,所获利润最大,最大利润为6125元.【点睛】本题考查了二次函数的应用,依据题意正确得出函数的关系式是解题关键.21、(1)9.5m;(2)20.5m.【分析】(1)根据题意得到,等腰直角三角形,从而得到,从而求解;(2)解直角三角形,求CH,构建方程即可解决问题;【详解】解:(1)在中,∵,,∴.∴.∴旗杆的高为.(2)在中,设.∵,∴.在中,,,∴,∴.解得.∴.答:笃志楼的高约为.【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22、(1);(2);(3)当20天或40天,最小利润为10元千克【分析】(1)把代入可得结论;(2)当时,设,把,代入;当时,设,把,代入,分别求解即可;(3)设利润为,分两种情形:当时、当时,利用二次函数的性质分别求解即可.【详解】解:(1)把代入,得到,故答案为:.(2)当时,设,把,代入得到,解得,.当时,设,把,代入得到,解得,.综上所述,.(3)设利润为.当时,,当时,有最小值,最小值为10(元千克).当时,,当时,最小利润(元千克),综上所述,当20天或40天,最小利润为10元千克.【点睛】本题考查二次函数的应用、一次函数的性质、待定系数法等知识,解题的关键从函数图象中获取信息,利用待定系数法求得解析式.23、(1)该火箭升空后飞行的最大高度为;(2)点火后和时,火箭高度为.【分析】(1)直接利用配方法将二次函数写成顶点式,进而求出即可;(2)把直接带入函数,解得的值即为所求.【详解】解:(1)由题意可得:.该火箭升空后飞行的最大高度为.(2)时,.解得:或.点火后和时,火箭高度为.【点睛】本题考查了二次函数的应用,明确与的值是解题的关键.24、(1);(2),最小值为;(3)或或或或.【分析】(1)由抛物线的对称性可得到,然后将A、B、C坐标代入抛物线解析式,求出a、b、c的值即可得到抛物线解析式;(2)利用待定系数法求出直线BC解析式,作轴交于点,设,则,表示出PQ的长度,然后得到△PBC的面积表达式,根据二次函数最值问题求出P点坐标,再把向左移动1个单位得,连接,易得即为最小值;(3)由题意可知在直线上运动,设,则,分别讨论:①,②,③,建立方程求出m的值,即可得到的坐标.【详解】解:(1)由抛物线的对称性知,把代入解析式,得解得:抛物线的解析式为.(2)设BC直线解析式为为将代入得,,解得∴直线的解析式为.作轴交于点,如图,设,则,.当时,取得最大值,此时,.把向左移动1个单位得,连接,如图.(3)由题意可知在直线上运动,设,则,∴①当时,,解得此时或;②当时,,解得此时或③当时,,解得,此时,综上所述的坐标为或或或.【点睛】本题考查二次函数的综合问题,涉及待定系数法求函数解析式,面积最值与线段最值问题,等腰三角形存在性问题,是中考常考的压轴题,难度较大,采用数形结合与分类讨论是解题的关键.25、(1),;(2)【分析】(1)根据待定系数法,分别把分别代入,进而得出解析式.(2)根据函数的交点性质,求出C、D的坐标,进而求出CD的长和三角形的高,进行求面积即可.【详解】解:(1)∵的图象过点,的图象过点,∴,∴,.(2)由(1)可知两条曲线与直线的交点为,∴,∴.【点睛】本题主要考察了反比例函数的性质,灵活运用待定系数法和函数的交点性质是解题的关键.26、(1)抛物线的对称轴x=1,A(6,0);(1)△ACD的面积为11;(3)点P的坐标为(1,1)或(1,6)或(1,3).【分析】(1)令y=0,求出x,即可求出点A、B的坐标,令x=0,求出y即可求出点C的坐标,再根据对称轴公式即可求出抛物线的对称轴;(1)先将二次函数的一般式化成顶点式,即可求出点D的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论