




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在平面直角坐标系中,点M(-1,3)关于x轴对称的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.一个直角三角形的三边长为三个连续偶数,则它的三边长分别是()A.2,4,6 B.4,6,8 C.3,4,5 D.6,8,103.如图,在中,,,,,则是()A. B.5 C. D.104.如果是方程ax+(a-2)y=0的一组解,则a的值是()A.1 B.-1 C.2 D.-25.如图,在△ABC中,AB=AC,点D是BC边上的中点,则下列结论中错误的是()A.∠BAD=∠CAD B.∠BAC=∠B C.∠B=∠C D.AD⊥BC6.下列运算正确的是()A.a2·a3=a6 B.(-a2)3=-a5C.a10÷a9=a(a≠0) D.(-bc)4÷(-bc)2=-b2c27.如图,△ABC≌△DCB,点A和点D是对应点,若AB=6cm,BC=8cm,AC=7cm,则DB的长为()A.6cm B.8cm C.7cm D.5cm8.计算的结果是()A. B. C. D.9.把一张正方形纸片如图①、图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是()A. B. C. D.10.若把代数式化为的形式(其中、为常数),则的值为()A. B. C.4 D.211.如图,下列推理及所证明的理由都正确的是()A.若,则,理由是内错角相等,两直线平行B.若,则,理由是两直线平行,内错角相等C.若,则,理由是内错角相等,两直线平行D.若,则,理由是两直线平行,内错角相等12.在平面直角坐标系中,点关于轴的对称点坐标为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,点B在点A的南偏西方向,点C在点A的南偏东方向,则的度数为______________.14.据统计分析2019年中国互联网行业发展趋势,3年内智能手机用户将达到1.2亿户,用科学记数法表示1.2亿为_______户.15.如图,在△ABC中,点D是AB边的中点,过点D作边AB的垂线l,E是l上任意一点,且AC=5,BC=8,则△AEC的周长最小值为_____.16.若一个多边形的内角和等于720°,则从这个多边形的一个顶点引出对角线__________条.17.如图①,四边形中,,点从点出发,沿折线运动,到点时停止,已知的面积与点运动的路程的函数图象如图②所示,则点从开始到停止运动的总路程为________.18.若2m=a,32n=b,m,n为正整数,则22m+15n=(结果用含a、b的式子表示)三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)在图中画出关于轴对称的;(2)通过平移,使移动到原点的位置,画出平移后的.(3)在中有一点,则经过以上两次变换后点的对应点的坐标为.20.(8分)先化简,再求值:(1),其中,;(2),再从1,2,3中选取一个适当的数代入求值.21.(8分)如图1,,,,AD、BE相交于点M,连接CM.
求证:;
求的度数用含的式子表示;
如图2,当时,点P、Q分别为AD、BE的中点,分别连接CP、CQ、PQ,判断的形状,并加以证明.
22.(10分)如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.(1)求证:AE=CF;(2)求∠ACF的度数.23.(10分)某体育文化用品商店购进篮球和排球共200个,进价和售价如下表全部销售完后共获利润2600元.类别价格篮球排球进价(元/个)8050售价(元/个)9560(1)求商店购进篮球和排球各多少个?(2)王老师在元旦节这天到该体育文化用品商店为学校买篮球和排球各若干个(两种球都买了),商店在他的这笔交易中获利100元王老师有哪几种购买方案.24.(10分)在等边△ABC中,点E在AB上,点D在CB延长线上,且ED=EC.(1)当点E为AB中点时,如图①,AEDB(填“﹥”“﹤”或“=”),并说明理由;(2)当点E为AB上任意一点时,如图②,AEDB(填“﹥”“﹤”或“=”),并说明理由;(提示:过点E作EF∥BC,交AC于点F)(3)在等边△ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,请你画出图形,并直接写出相应的CD的长.25.(12分)某地在城区美化工程招标时,有甲、乙两个工程队投标.经测算,获得以下信息:信息1:乙队单独完成这项工程需要60天;信息2:若先由甲、乙两队合做16天,剩下的工程再由乙队单独做20天可以完成;信息3:甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.根据以上信息,解答下列问题:(1)甲队单独完成这项工程需要多少天?(2)若该工程计划在50天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲、乙两队全程合作完成该工程省钱?26.解不等式(组)(1);(2)
参考答案一、选择题(每题4分,共48分)1、C【解析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得点的坐标,再根据点的坐标确定所在象限.【详解】点M(-1,3)关于x轴对称的点坐标为(-1,-3),在第三象限,故选C.【点睛】本题考查的是关于x轴、y轴对称的点的坐标,熟练掌握关于x轴对称点的坐标特点是解题的关键.2、D【分析】根据连续偶数相差是2,设中间的偶数是x,则另外两个是x-2,x+2根据勾股定理即可解答.【详解】解:根据连续偶数相差是2,设中间的偶数是x,则另外两个是x-2,x+2根据勾股定理,得
(x-2)2+x2=(x+2)2,
x2-4x+4+x2=x2+4x+4,
x2-8x=0,
x(x-8)=0,
解得x=8或0(0不符合题意,应舍去),
所以它的三边是6,8,1.故选:D.【点睛】本题考查了一元二次方程的应用及勾股定理,注意连续偶数的特点,能够熟练解方程.3、A【分析】由已知条件得出OB,OA的长,再根据30°所对的直角边是斜边的一半得出OD.【详解】解:∵,,,∴OB=10,∴OA==,又∵,∴在直角△AOD中,OD=OA=,故选A.【点睛】本题考查了直角三角形的性质,30°所对直角边是斜边的一半,勾股定理,关键是要得出OA的长度.4、B【解析】将代入方程ax+(a−2)y=0得:−3a+a−2=0.解得:a=−1.故选B.5、B【分析】由在△ABC中,AB=AC,点D为BC的中点,根据等边对等角与三线合一的性质,即可求得答案.【详解】∵AB=AC,点D为BC的中点,
∴∠BAD=∠CAD,AD⊥BC,∠B=∠C.
故A、C、D正确,B错误.
故选:B.【点睛】本题考查了等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.6、C【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方法则进行计算即可.【详解】解:A、a2•a3=a5,故A错误;B、(﹣a2)3=﹣a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(﹣bc)4÷(﹣bc)2=b2c2,故D错误;故选:C.【点睛】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.7、C【分析】根据全等三角形的性质即可求出:AC=BD=7cm.【详解】解:∵△ABC≌△DCB,AC=7cm,∴AC=BD=7cm.故选:C.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解决此题的关键.8、D【分析】根据幂的乘方:底数不变,指数相乘;以及积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘,进行运算,即可求解.【详解】解:,故选D.【点睛】本题考察积的乘方以及幂的乘方运算,较容易,熟练掌握积的乘方以及幂的乘方运算法则是顺利解题的关键.9、C【解析】当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的一个顶点对着正方形的边.故选C.10、B【分析】根据完全平方式配方求出m和k的值即可.【详解】由题知,则m=1,k=-3,则m+k=-2,故选B.【点睛】本题是对完全平方公式的考查,熟练掌握完全平方公式是解决本题的关键.11、D【分析】根据平行线的性质与判定定理逐项判断即可.【详解】解:A、若,则,理由是两直线平行,内错角相等,故A错误;B、若,不能判断,故B错误;C、若,则,理由是两直线平行,内错角相等,故C错误;D、若,则,理由是两直线平行,内错角相等,正确,故答案为:D.【点睛】本题考查了平行线的性质与判定定理,解题的关键是熟练掌握平行线的性质与判定定理.12、B【分析】根据关于轴对称的点的特点:横坐标相同,纵坐标互为相反数即可得出答案.【详解】根据关于轴对称的点的特点:横坐标相同,纵坐标互为相反数,可知点关于轴的对称点坐标为.故选:B.【点睛】本题主要考查关于轴对称的点的特点,掌握关于轴对称的点的特点是解题的关键.二、填空题(每题4分,共24分)13、;【分析】根据方位角的定义以及点的位置,即可求出的度数.【详解】解:∵点B在点A的南偏西方向,点C在点A的南偏东方向,∴;故答案为:75°.【点睛】本题考查了解直角三角形的应用——方向角问题,会识别方向角是解题的关键.14、3.32×2【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1.2亿用科学记数法表示为:3.32×2.故答案为3.32×2.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15、1【解析】连接BE,依据l是AB的垂直平分线,可得AE=BE,进而得到AE+CE=BE+CE,依据BE+CE≥BC,可知当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,故△AEC的周长最小值等于AC+BC.【详解】如图,连接BE.∵点D是AB边的中点,l⊥AB,∴l是AB的垂直平分线,∴AE=BE,∴AE+CE=BE+CE.∵BE+CE≥BC,∴当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,∴△AEC的周长最小值等于AC+BC=5+8=1.故答案为1.【点睛】本题考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.16、1【解析】根据多边形的内角和公式求出边数,从而求出这个多边形从一个顶点出发引出的对角线的条数.【详解】设多边形的边数是n,则(n﹣2)•180°=720°,解得n=6,∴从这个多边形的一个顶点引出对角线是:6﹣1=1(条),故答案为1.【点睛】本题考查多边形的对角线,多边形内角与外角,关键是要先根据多边形的内角和公式求出边数.17、11【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是,由B到C运动的路程为3,∴解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴∴点P从开始到停止运动的总路程为:AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.18、【分析】同底数幂相乘,底数不变,指数相加【详解】原式=.故答案为考点:同底数幂的计算三、解答题(共78分)19、(1)图见解析;(2)图见解析;(3)【分析】(1)先分别找到A、B、C关于x轴的对称点,然后连接、、即可;(2)先判断移动到原点的位置时的平移规律,然后分别将、按此规律平移,得到、,连接、、即可;(3)根据关于x轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到,然后根据(2)中的平移规律即可得到的坐标.【详解】解:(1)先分别找到A、B、C关于x轴的对称点,然后连接、、,如下图所示:即为所求(2)∵∴∴到点O(0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将、按此规律平移,得到、,连接、、,如图所示,即为所求;(3)由(1)可知,经过第一次变化后为然后根据(2)的平移规律,经过第二次变化后为故答案为:.【点睛】此题考查的是画已知图形关于x轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x轴对称图形画法、平移后的图形画法、关于x轴对称两点坐标规律和坐标的平移规律是解决此题的关键.20、(1)原式=,值为-1;(2)原式=,值为-1.【分析】(1)括号内先通分进行分式加减运算,然后在与括号外的分式进行除法运算,化简后把数值代入即可求解;(2)括号内先通分进行分式加减运算,然后在与括号外的分式进行除法运算,化简后根据使分式有意义的原则在所给的数中,选择一个合适的数值代入即可求解.【详解】(1)原式=,当,时,原式=,故原式=,值为-1;(2)原式=,若使原式有意义,则,,即所以x应取3,即当时,原式=故原式=,值为-1.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是关键,在代值进行计算时,切记所代入的数值要使原分式有意义.21、(1)见解析;(2);(3)为等腰直角三角形,证明见解析.【解析】分析(1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,再根据∠AFC=∠BFH,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP=∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.详解:如图1,,,在和中,,≌;如图1,≌,,中,,,中,;为等腰直角三角形.证明:如图2,由可得,,,BE的中点分别为点P、Q,,≌,,在和中,,≌,,且,又,,,为等腰直角三角形.点睛:本题主要考查了全等三角形的判定与性质,等腰直角三角形的判定以及三角形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题.22、(1)证明见解析;(2)∠ACF=90°.【解析】(1)根据△ABC是等边三角形,得出AB=BC,∠ABE+∠EBC=60°,再根据△BEF是等边三角形,得出EB=BF,∠CBF+∠EBC=60°,从而求出∠ABE=∠CBF,最后根据SAS证出△ABE≌△CBF,即可得出AE=CF;(2)根据△ABC是等边三角形,AD是∠BAC的角平分线,得出∠BAE=30°,∠ACB=60°,再根据△ABE≌△CBF,得出∠BCF=∠BAE=30°,从而求出∠ACF的度数.【详解】(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABE+∠EBC=60°.∵△BEF是等边三角形,∴EB=BF,∠CBF+∠EBC=60°.∴∠ABE=∠CBF.在△ABE和△CBF中,,∴△ABE≌△CBF(SAS).∴AE=CF;(2)∵等边△ABC中,AD是∠BAC的角平分线,∴∠BAE=∠BAC=30°,∠ACB=60°.∵△ABE≌△CBF,∴∠BCF=∠BAE=30°.∴∠ACF=∠BCF+∠ACB=30°+60°=90°.【点睛】此题考查了等边三角形的性质和全等三角形的判定,关键是根据等边三角形的性质得出∠ABE=∠CBF,掌握全等三角形的判定,角平分线的性质等知识点.23、(1)商店购进篮球120个,排球80个;(2)王老师共有3种购买方案,方案1:购进篮球2个,排球7个;方案2:购进篮球4个,排球3个;方案3:购进篮球6个,排球1个.【分析】(1)设商店购进篮球x个,排球y个,根据商店购进两种球共200个且销售利润为2600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设王老师购买篮球m个,排球n个,根据商店在他的这笔交易中获利100元,即可得出关于m,n的二元一次方程,结合m,n均为正整数,即可得出各购买方案.【详解】解:(1)设商店购进篮球x个,排球y个,依题意得:,解得:,答:商店购进篮球120个,排球80个;(2)设王老师购买篮球m个,排球n个,依题意得:(95﹣80)m+(60﹣50)n=100,∴n=10﹣m,∵m,n均为正整数,∴m为偶数,∴当m=2时,n=7;当m=4时,n=4;当m=6时,n=1,答:王老师共有3种购买方案,方案1:购进篮球2个,排球7个;方案2:购进篮球4个,排球3个;方案3:购进篮球6个,排球1个.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,找准等量关系,正确列出二元一次方程组(或二元一次方程)是解题的关键.24、(1)=,理由见解析;(2)=,理由见解析;(3)见解析【分析】(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ECB=30°,求出∠DEB=30°,求出BD=BE即可;
(2)过E作EF∥BC交AC于F,求出等边三角形AEF,证△DEB和△ECF全等,求出BD=EF即可;
(3)当D在CB的延长线上,E在AB的延长线式时,由(2)求出CD=3,当E在BA的延长线上,D在BC的延长线上时,求出CD=1.【详解】解:(1)=,理由如下:∵ED=EC∴∠D=∠ECD∵△ABC是等边三角形∴∠ACB=∠ABC=60°∵点E为AB中点∴∠BCE=∠ACE=30°,AE=BE∴∠D=30°∴∠DEB=∠ABC-∠D=30°∴∠DEB=∠D∴BD=BE∴BD=AE(2)过点E作EF∥BC,交AC于点F∵△ABC是等边三角形∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,∠FEC=∠ECB∴∠EFC=∠EBD=120°∵ED=EC∴∠D=∠ECD∴∠D=∠FEC在△EFC和△DBE中∴△EFC≌△DBE∴EF=DB∵∠AEF=∠AFE=60°∴△AEF为等边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024秋七年级语文上册 第二单元 7《散文诗二首》荷叶 母亲教学设计 新人教版
- 3我很诚实(教学设计)-统编版道德与法治三年级下册
- 《第4节 组装电脑了解电脑硬件的主要部件》教学设计 -2023-2024学年北师大版初中信息技术七年级上册
- 15《我们不乱扔》(教学设计)2024-2025学年统编版(2024)道德与法治一年级上册
- 5《我们的校园》第一课时(教学设计)-部编版道德与法治一年级上册
- 认知发展差异的教育意义
- 6 花儿草儿真美丽 教学设计-2023-2024学年道德与法治一年级下册统编版
- 2024秋四年级英语上册 Unit 2 My schoolbag第6课时(Read and write Story time)教学设计 人教PEP
- 2024-2025学年新教材高中语文 第3单元 探索与发现 群文阅读(三)学习科技 开拓创新教学设计 新人教版必修下册
- Unit 5 I Have a Bag (Period 3) (教学设计)-2024-2025学年陕旅版(三起)(2024)英语三年级上册
- 《医疗废物的处理》课件
- 绳子莫泊桑课件
- 教育培训合作分成协议书
- 2024年国家危险化学品经营单位安全生产考试题库(含答案)
- 防性侵安全教育课件
- 改革开放课件教案
- 自行车采购合同模板
- 《美的集团股权激励实施过程及实施效果分析案例(论文)》14000字
- 2024年四川省南充市中考生物试卷真题(含官方答案及解析)
- JT-T-524-2019公路工程水泥混凝土用纤维
- DL-T5501-2015冻土地区架空输电线路基础设计技术规程
评论
0/150
提交评论