湖南省雅礼教育集团2022年数学九年级第一学期期末综合测试模拟试题含解析_第1页
湖南省雅礼教育集团2022年数学九年级第一学期期末综合测试模拟试题含解析_第2页
湖南省雅礼教育集团2022年数学九年级第一学期期末综合测试模拟试题含解析_第3页
湖南省雅礼教育集团2022年数学九年级第一学期期末综合测试模拟试题含解析_第4页
湖南省雅礼教育集团2022年数学九年级第一学期期末综合测试模拟试题含解析_第5页
免费预览已结束,剩余18页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.给出下列四个函数:①y=﹣x;②y=x;③y=;④y=x1.x<0时,y随x的增大而减小的函数有()A.1个 B.1个 C.3个 D.4个2.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()A. B. C. D.3.如图,A,B,C,D是⊙O上的四个点,弦AC,BD交于点P.若∠A=∠C=40°,则∠BPC的度数为()A.100° B.80°C.50° D.40°4.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()A. B. C. D.5.如图所示是一个运算程序,若输入的值为﹣2,则输出的结果为()A.3 B.5 C.7 D.96.若整数a使关于x的分式方程=2有整数解,且使关于x的不等式组至少有4个整数解,则满足条件的所有整数a的和是()A.﹣14 B.﹣17 C.﹣20 D.﹣237.在同一时刻,身高1.6m的小强在阳光下的影长为0.8m,一棵大树的影长为4.8m,则树的高度为()A.4.8m B.6.4m C.9.6m D.10m8.在一个不透明的盒子中装有个白球,若于个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A. B. C. D.9.下列方程中,没有实数根的方程是()A.(x-1)2=2C.3x210.如图,太阳在A时测得某树(垂直于地面)的影长ED=2米,B时又测得该树的影长CD=8米,若两次日照的光线PE⊥PC交于点P,则树的高度为PD为()A.3米 B.4米 C.4.2米 D.4.8米11.如图,在直线上有相距的两点和(点在点的右侧),以为圆心作半径为的圆,过点作直线.将以的速度向右移动(点始终在直线上),则与直线在______秒时相切.A.3 B.3.5 C.3或4 D.3或3.512.已知,是一元二次方程的两个实数根,下列结论错误的是()A. B. C. D.二、填空题(每题4分,共24分)13.已知反比例函数的图象经过点(2,﹣3),则此函数的关系式是________.14.如图,坡角为30°的斜坡上两树间的水平距离AC为2m,则两树间的坡面距离AB为___________________15.如图,是半圆的直径,四边形内接于圆,连接,,则_________度.16.一只小狗自由自在地在如图所示的某个正方形场地跑动,然后随意停在图中阴影部分的概率是__.17.如图,的顶点都在正方形网格的格点上,则的值为________.18.如果3是数和6的比例中项,那么__________三、解答题(共78分)19.(8分)如图,△ABC的坐标依次为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC绕原点O顺时针旋转180°得到△A1B1C1.(1)画出△A1B1C1;(2)求在此变换过程中,点A到达A1的路径长.20.(8分)我们把端点都在格点上的线段叫做格点线段.如图,在7×7的方格纸中,有一格点线段AB,按要求画图.(1)在图1中画一条格点线段CD将AB平分.(2)在图2中画一条格点线段EF.将AB分为1:1.21.(8分)探究题:如图1,和均为等边三角形,点在边上,连接.(1)请你解答以下问题:①求的度数;②写出线段,,之间数量关系,并说明理由.(2)拓展探究:如图2,和均为等腰直角三角形,,点在边上,连接.请判断的度数及线段,,之间的数量关系,并说明理由.(3)解决问题:如图3,在四边形中,,,,与交于点.若恰好平分,请直接写出线段的长度.22.(10分)平行四边形中,点为上一点,连接交对角线于点,点为上一点,于,且,点为的中点,连接;若.(1)求的度数;(2)求证:23.(10分)如图,已知AB是⊙O的直径,AC为弦,且平分∠BAD,AD⊥CD,垂足为D.(1)求证:CD是⊙O的切线;(2)若⊙O的直径为4,AD=3,试求∠BAC的度数.24.(10分)树AB和木杆CD在同一时刻的投影如图所示,木杆CD高2m,影子DE长3m;若树的影子BE长7m,则树AB高多少m?25.(12分)对于平面直角坐标系中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作d(M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.(1)当⊙O的半径为2时,①如果点A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)=________;②如果直线与⊙O互为“可及图形”,求b的取值范围;(2)⊙G的圆心G在轴上,半径为1,直线与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.26.在平行四边形中,为对角线,,点分别为边上的点,连接平分.(1)如图,若且,求平行四边形的面积.(2)如图,若过作交于求证:

参考答案一、选择题(每题4分,共48分)1、C【解析】解:当x<0时,①y=−x,③,④y随x的增大而减小;②y=x,y随x的增大而增大.故选C.2、A【解析】试题解析:是平行四边形,故选A.3、B【分析】根据同一个圆中,同弧所对的圆周角相等,可知,结合题意求的度数,再根据三角形的一个外角等于其不相邻两个内角和解题即可.【详解】故选B【点睛】本题考查圆的综合,其中涉及圆周角定理、三角形外角性质,是常见考点,熟练掌握相关知识是解题关键.4、A【分析】抛物线平移不改变a的值.【详解】原抛物线的顶点为(0,0),向左平移2个单位,再向下平移1个单位,那么新抛物线的顶点为(﹣2,﹣1),可设新抛物线的解析式为:y=(x﹣h)2+k,代入得:y=(x+2)2﹣1=x2+4x+1.故选A.5、B【分析】根据图表列出算式,然后把x=-2代入算式进行计算即可得解.【详解】解:把x=﹣2代入得:1﹣2×(﹣2)=1+4=1.故选:B.【点睛】此题考查代数式求值,解题关键在于掌握运算法则.6、A【解析】根据不等式组求出a的范围,然后再根据分式方程求出a的范围,从而确定a满足条件的所有整数值,求和即可.【详解】不等式组整理得:,由不等式组至少有4个整数解,得到a+2<﹣1,解得:a<﹣3,分式方程去分母得:12﹣ax=2x+4,解得:x=,∵分式方程有整数解且a是整数∴a+2=±1、±2、±4、±8,即a=﹣1、﹣3、0、﹣4、2、﹣6、6、﹣10,又∵x=≠﹣2,∴a≠﹣6,由a<﹣3得:a=﹣10或﹣4,∴所有满足条件的a的和是﹣14,故选:A.【点睛】本题主要考查含参数的分式方程和一元一次不等式组的综合,熟练掌握分式方程和一元一次不等式组的解法,是解题的关键,特别注意,要检验分式方程的增根.7、C【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】设树高为x米,所以x=4.8×2=9.6.这棵树的高度为9.6米故选C.【点睛】考查相似三角形的应用,掌握同一时刻物高和影长成正比是解题的关键.8、B【分析】根据题意可知摸出白球的概率=白球个数÷白球与黄球的和,代入求x即可.【详解】解:设黄球个数为x,∵在一个不透明的盒子中装有个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,∴=8÷(8+x)∴x=4,经检验x=4是分式方程的解,故选:B【点睛】本题考查的是利用频率估计概率,正确理解题意是解题的关键.9、D【解析】先把方程化为一般式,再分别计算各方程的判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:A、方程化为一般形式为:x2-2x-1=0,△=(−2)2−4×1×(−1)=8>0,方程有两个不相等的实数根,所以B、方程化为一般形式为:2x2-x-3=0,△=(−1)2−4×2×(−3)=25>0,方程有两个不相等的实数根,所以C、△=(−2)2−4×3×(−1)=16>0,方程有两个不相等的实数根,所以C选项错误;D、△=22−4×1×4=−12<0,方程没有实数根,所以D选项正确.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10、B【分析】根据题意求出△PDE和△FDP相似,根据相似三角形对应边成比例可得=,然后代入数据进行计算即可得解.【详解】∵PE⊥PC,∴∠E+∠C=90°,∠E+∠EPD=90°,∴∠EPD=∠C,又∵∠PDE=∠FDP=90°,∴△PDE∽△FDP,∴=,由题意得,DE=2,DC=8,∴=,解得PD=4,即这颗树的高度为4米.故选:B.【点睛】本题通过投影的知识结合三角形的相似,求解高的大小;是平行投影性质在实际生活中的应用.11、C【分析】根据与直线AB的相对位置分类讨论:当在直线AB左侧并与直线AB相切时,根据题意,先计算运动的路程,从而求出运动时间;当在直线AB右侧并与直线AB相切时,原理同上.【详解】解:当在直线AB左侧并与直线AB相切时,如图所示∵的半径为1cm,AO=7cm∴运动的路程=AO-=6cm∵以的速度向右移动∴此时的运动时间为:÷2=3s;当在直线AB右侧并与直线AB相切时,如图所示∵的半径为1cm,AO=7cm∴运动的路程=AO+=8cm∵以的速度向右移动∴此时的运动时间为:÷2=4s;综上所述:与直线在3或4秒时相切故选:C.【点睛】此题考查的是直线与圆的位置关系:相切和动圆问题,掌握相切的定义和行程问题公式:时间=路程÷速度是解决此题的关键.12、C【分析】由题意根据解一元二次方程的概念和根与系数的关系对选项逐次判断即可.【详解】解:∵△=22-4×1×0=4>0,∴,选项A不符合题意;∵是一元二次方程的实数根,∴,选项B不符合题意;∵,是一元二次方程的两个实数根,∴,,选项D不符合题意,选项C符合题意.故选:C.【点睛】本题考查解一元二次方程和根与系数的关系,能熟记根与系数的关系的内容是解此题的关键.二、填空题(每题4分,共24分)13、【解析】试题分析:利用待定系数法,直接把已知点代入函数的解析式即可求得k=-6,所以函数的解析式为:.14、m【分析】根据余弦的定义计算,得到答案.【详解】在Rt△ABC中,cosA=,∴AB=,故答案为:m.【点睛】本题考查了三角函数的问题,掌握三角函数的定义以及应用是解题的关键.15、1【分析】首先根据圆周角定理求得∠ADB的度数,从而求得∠BAD的度数,然后利用圆内接四边形的性质求得未知角即可.【详解】解:∵AB是半圆O的直径,AD=BD,

∴∠ADB=90°,∠DAB=45°,

∵四边形ABCD内接于圆O,

∴∠BCD=180°-45°=1°,

故答案为:1.【点睛】考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是根据圆周角定理得到三角形ABD是等腰直角三角形,难度不大.16、.【分析】根据概率公式求概率即可.【详解】图上共有16个方格,黑色方格为7个,小狗最终停在黑色方格上的概率是.故答案为:.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.17、【分析】先证明△ABC为直角三角形,再根据正切的定义即可求解.【详解】根据网格的性质设网格的边长为1,则AB=,AC=,BC=∵AB2+AC2=BC2,∴△ABC为直角三角形,∠A=90°,∴=故填:.【点睛】此题主要考查正切的求解,解题的关键是证明三角形为直角三角形.18、【分析】根据比例的基本性质知道,在比例里两个外项的积等于两个内项的积.【详解】因为,在比例里两个外项的积等于两个内项的积,所以,6x=3×3,x=9÷6,x=,故答案为:.【点睛】本题考查了比例中项的概念,熟练掌握概念是解题的关键.三、解答题(共78分)19、(1)画图见解析;(2)点A到达A1的路径长为π.【分析】(1)根据旋转的定义分别作出点A,B,C绕原点旋转所得对应点,再首尾顺次连接即可得;(2)点A到达A1的路径是以O为圆心,OA为半径的半圆,据此求解可得.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)∵OA==,∴点A到达A1的路径长为×2π×=π.【点睛】本题考查利用旋转变换作图,勾股定理,弧长公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.20、(1)见解析;(2)见解析.【分析】(1)根据矩形ACBD即可解决问题.(2)利用平行线分线段成比例定理解决问题即可.【详解】解:(1)如图,线段CD即为所求.(2)如图,线段EF即为所求,注意有两种情形.【点睛】本题考查作图-应用与设计,矩形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用数形结合的思想解决问题.21、(1)①;②线段、、之间的数量关系为:,理由见解析;(2),,理由见解析.(3)理由见解析.【分析】(1)①证明△BAD≌△CAE(SAS),可得结论:∠ACE=∠B=60°;②由△BAD≌△CAE,得BD=CE,利用等边三角形的AC=BC=BD+DC等量代换可得结论;(2)如图2,先证明△ABD≌△ACE,得BD=CE,∠ACE=∠B=45°,同理可得结论;(3)如图3,作辅助线,构建如图2的两个等腰直角三角形,已经有一个△ABD,再证明△ACF也是等腰直角三角形,则利用(2)的结论求AC的长.【详解】(1)①∵和均为等边三角形,∴,,,∴,即,∴,∴,②线段、、之间的数量关系为:;理由是:由①得:,∴,∵,∴;(2),,理由是:如图2,∵和均为等腰直角三角形,且,∴,,,即,∴,∴,,∵,∴,∵在等腰直角三角形中,,∴;(3)如图3,过作的垂线,交的延长线于点,∵,,,∴,,∵,∴以BD的中点为圆心,为半径作圆,则A,C在此圆上,∴、、、四点共圆,∵恰好平分∴,∴是等腰直角三角形,由(2)得:,∴.【点睛】本题是四边形的综合题,考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的性质和判定、四点共圆的判定,圆周角定理,本题还运用了类比的思想,从问题发现到解决问题,第三问有难度,作辅助线,构建等腰直角三角形ACF是关键.22、(1)30°(2)证明见解析【分析】(1)通过平行四边形的性质、中点的性质、平行线的性质去证明,可得,再根据求解即可;(2)延长FE至点N,使,连接AN,通过证明,可得,再根据特殊角的锐角三角函数值,即可得证.【详解】(1)∵四边形ABCD为平行四边形∵M为AD的中点即即;(2)延长FE至点N,使,连接AN,由(1)知,.【点睛】本题考查了平行四边形的综合问题,掌握平行四边形的性质、平行线的性质、全等三角形的性质以及判定定理、特殊三角函数值是解题的关键.23、(1)证明见解析;(2)30°.【解析】(1)连接OC,证先利用角平分线的定义和等腰三角形的性质证明∠OCA=∠DAC,从而OC∥AD,由平行线的性质可得OC⊥CD,从而得出CD是⊙O切线;(2)连接BC,证明△ACB∽△ADC,求出AC的长度,再求出∠BAC的余弦,得出∠BAC的度数.【详解】解:(1)连结OC.∵平分,∴∠BAC=∠DAC.又OA=OC,∴∠BAC=∠OCA,∴∠OCA=∠DAC,∴OC∥AD.∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线.(2)连结BC.∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠ADC=90°.又∠BAC=∠DAC,∴△ACB∽△ADC.∴,,,∴AC=.在Rt△ACB中,cos∠BAC=,∴∠BAC=30°.【点睛】本题主要考查了等腰三角形的性质,平行线的判定与性质,圆的切线的判定及锐角三角函数的知识.连接半径是证明切线的一种常用辅助线的做法,求角的度数可以借助于三角函数.24、树AB高m【分析】根据树和标杆平行列出比例式代入相关数据即可求解.【详解】解:∵AB与CD平行,∴AB:BE=CD:DE,∴AB:7=2:3,解得AB=故树AB高m.【点睛】考核知识点:平行投影.理解平行投影性质是关键.25、(1)①1,3;②;(2),.【分析】(1)①根据图形M,N间的“近距离”的定义结合已知条件求解即可.②根据可及图形的定义作出符合题意的图形,结合图形作答即可;(2)分两种情况进行讨论即可.【详解】(1)①如图:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论