2022-2023学年云南省红河哈尼族彝族自治州建水县数学九上期末学业水平测试试题含解析_第1页
2022-2023学年云南省红河哈尼族彝族自治州建水县数学九上期末学业水平测试试题含解析_第2页
2022-2023学年云南省红河哈尼族彝族自治州建水县数学九上期末学业水平测试试题含解析_第3页
2022-2023学年云南省红河哈尼族彝族自治州建水县数学九上期末学业水平测试试题含解析_第4页
2022-2023学年云南省红河哈尼族彝族自治州建水县数学九上期末学业水平测试试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知△ABC≌△DEF,∠A=60°,∠E=40°,则∠F的度数为()A.40 B.60 C.80 D.1002.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为().A.; B.;C.; D..3.方程(m﹣1)x2﹣2mx+m﹣1=0中,当m取什么范围内的值时,方程有两个不相等的实数根?()A.m> B.m>且m≠1 C.m< D.m≠14.已知抛物线的解析式为,则下列说法中错误的是()A.确定抛物线的开口方向与大小B.若将抛物线沿轴平移,则,的值不变C.若将抛物线沿轴平移,则的值不变D.若将抛物线沿直线:平移,则、、的值全变5.菱形的两条对角线长分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm6.菱形具有而矩形不具有的性质是()A.对边相等 B.对角相等 C.对角线互相平分 D.对角线互相垂直7.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?”如果设木条长尺,绳子长尺,可列方程组为()A. B. C. D.8.一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是()A.﹣1 B.﹣2 C.1 D.09.如图反比例函数()与正比例函数()相交于两点A,B.若点A(1,2),B坐标是()A.(,) B.(,) C.(,) D.(,)10.已知与各边相切于点,,则的半径()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,,则经过三点的圆弧所在圆的圆心的坐标为__________;点坐标为,连接,直线与的位置关系是___________.12.如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则k=_____.13.抛物线y=(x﹣2)2﹣3的顶点坐标是____.14.如图,在矩形ABCD中,AB=2,AD=,以点C为圆心,以BC的长为半径画弧交AD于E,则图中阴影部分的面积为__________.15.如图,在平面直角坐标系中,直线l:与坐标轴分别交于A,B两点,点C在x正半轴上,且OC=OB.点P为线段AB(不含端点)上一动点,将线段OP绕点O顺时针旋转90°得线段OQ,连接CQ,则线段CQ的最小值为___________.16.如图,在菱形中,与交于点,若,则菱形的面积为_____.17.点关于原点对称的点为_____.18.已知,.且,设,则的取值范围是______.三、解答题(共66分)19.(10分)如图,四边形是平行四边形,连接对角线,过点作与的延长线交于点,连接交于.(1)求证:;(2)连结,若,且,求证:四边形是正方形.20.(6分)某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量的取值范围是全体实数,与的几组对应值列表如下:其中,.……0123…………3003……(2)根据表中数据,在如图所示的平面直角坐标系中描点,已画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出一条函数的性质:;(4)观察函数图象发现:若关于的方程有4个实数根,则的取值范围是.21.(6分)如图,在中,,是绕着点C顺时针方向旋转得到的,此时B、C、E在同一直线上.求旋转角的大小;若,,求BE的长.22.(8分)解答下列各题:(1)计算:2cos31°﹣tan45°﹣;(2)解方程:x2﹣11x+9=1.23.(8分)现有红色和蓝色两个布袋,红色布袋中有三个除标号外完全相同的小球,小球上分别标有数字1,2,3,蓝色布袋中有也三个除标号外完全相同的小球,小球上分别标有数字2,3,4小明先从红布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从蓝布袋中随机取出一个小球,用n表示取出的球上标有的数字.(1)用列表法或树状图表示出两次取得的小球上所标数字的所有可能结果;(2)若把m、n分别作为点A的横坐标和纵坐标,求点A(m,n)在函数y=的图象上的概率.24.(8分)抛物线直线一个交点另一个交点在轴上,点是线段上异于的一个动点,过点作轴的垂线,交抛物线于点.(1)求抛物线的解析式;(2)是否存在这样的点,使线段长度最大?若存在,求出最大值及此时点的坐标,若不存在,说明理由;(3)求当为直角三角形时点P的坐标.25.(10分)给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.26.(10分)阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2),分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为,求k的值.(3)点B在x轴上,以B为圆心,为半径画⊙B,若直线y=x+3与⊙B的“最美三角形”的面积小于,请直接写出圆心B的横坐标的取值范围.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.2、B【分析】根据抛物线图像的平移规律“左加右减,上加下减”即可确定平移后的抛物线解析式.【详解】解:将抛物线向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为,故选B.【点睛】本题考查了二次函数的平移规律,熟练掌握其平移规律是解题的关键.3、B【分析】由题意可知原方程的根的判别式△>0,由此可得关于m的不等式,求出不等式的解集后再结合方程的二次项系数不为0即可求出答案.【详解】解:由题意可知:△=4m2﹣4(m﹣1)2>0,解得:∴m>,∵m﹣1≠0,∴m≠1,∴m的范围是:m>且m≠1.故选:B.【点睛】本题考查了一元二次方程的根的判别式和一元一次不等式的解法等知识,属于基本题型,熟练掌握一元二次方程的根的判别式与方程根的个数的关系是解题关键.4、D【分析】利用二次函数的性质对A进行判断;利用二次函数图象平移的性质对B、C、D进行判断.【详解】解:A、确定抛物线的开口方向与大小,说法正确;B、若将抛物线C沿y轴平移,则抛物线的对称轴不变,开口大小、开口方向不变,即a,b的值不变,说法正确;C、若将抛物线C沿x轴平移,抛物线的开口大小、开口方向不变,即a的值不变,说法正确;D、若将抛物线C沿直线l:y=x+2平移,抛物线的开口大小、开口方向不变,即a不变,b、c的值改变,说法错误;故选:D.【点睛】本题考查了二次函数图象与几何变换,由于抛物线平移后的形状不变,所以a不变.5、B【分析】根据菱形的对角线互相垂直平分求出OA、OB的长,再利用勾股定理列式求出边长AB,然后根据菱形的周长公式列式进行计算即可得解.【详解】解:如图,∵菱形的两条对角线的长是6cm和8cm,∴OA=×80=40cm,OB=×60=30cm,又∵菱形的对角线AC⊥BD,∴AB==50cm,∴这个菱形的边长是50cm.故选B.【点睛】本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.6、D【分析】根据菱形和矩形都是平行四边形,都具备平行四边形性质,再结合菱形及矩形的性质,对各选项进行判断即可.【详解】解:因为菱形和矩形都是平行四边形,都具备平行四边形性质,即对边平行而且相等,对角相等,对角线互相平分.、对边平行且相等是菱形矩形都具有的性质,故此选项错误;、对角相等是菱形矩形都具有的性质,故此选项错误;、对角线互相平分是菱形矩形都具有的性质,故此选项错误;、对角线互相垂直是菱形具有而矩形不具有的性质,故此选项正确;故选:D.【点睛】本题考查了平行四边形、矩形及菱形的性质,属于基础知识考查题,同学们需要掌握常见几种特殊图形的性质及特点.7、D【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子-木条=4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:木条-绳子=1,据此列出方程组即可.【详解】由题意可得,.故选:D.【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.8、A【解析】根据一元二次方程一次项系数的定义即可得出答案.【详解】由一元二次方程一次项系数的定义可知一次项系数为﹣1,故选:A.【点睛】本题考查的是一元二次方程的基础知识,比较简单,需要熟练掌握.9、A【分析】先根据点A的坐标求出两个函数解析式,然后联立两个解析式即可求出答案.【详解】将A(1,2)代入反比例函数(),得a=2,∴反比例函数解析式为:,将A(1,2)代入正比例函数(),得k=2,∴正比例函数解析式为:,联立两个解析式,解得或,∴点B的坐标为(-1,-2),故选:A.【点睛】本题考查了反比例函数和正比例函数,求出函数解析式是解题关键.10、C【分析】根据内切圆的性质,得到,AE=AD=5,BD=BF=2,CE=CF=3,作BG⊥AC于点G,然后求出BG的长度,利用面积相等即可求出内切圆的半径.【详解】解:如图,连接OA、OB、OC、OD、OE、OF,作BG⊥AC于点G,∵是的内切圆,∴,AE=AD=5,BD=BF=2,CE=CF=3,∴AC=8,AB=7,BC=5,在Rt△BCG和Rt△ABG中,设CG=x,则AG=,由勾股定理,得:,∴,解得:,∴,∴,∵,∴;故选:C.【点睛】本题考查了三角形内切圆的性质,利用勾股定理解直角三角形,以及利用面积法求线段的长度,解题的关键是掌握三角形内切圆的性质,熟练运用三角形面积相等进行解题.二、填空题(每小题3分,共24分)11、(2,0)相切【分析】由网格容易得出AB的垂直平分线和BC的垂直平分线,它们的交点即为点M,根据图形即可得出点M的坐标;由于C在⊙M上,如果CD与⊙M相切,那么C点必为切点;因此可连接MC,证MC是否与CD垂直即可.可根据C、M、D三点坐标,分别表示出△CMD三边的长,然后用勾股定理来判断∠MCD是否为直角.【详解】解:如图,作线段AB,CD的垂直平分线交点即为M,由图可知经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0).

连接MC,MD,

∵MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,∴MD2=MC2+CD2,∴∠MCD=90°,

又∵MC为半径,

∴直线CD是⊙M的切线.故答案为:(2,0);相切.【点睛】本题考查的直线与圆的位置关系,圆的切线的判定等知识,在网格和坐标系中巧妙地与圆的几何证明有机结合,较新颖.12、-1【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根据相似三角形的性质得出比例式,再由tan∠CAB=2,可得出CF•OF的值,进而得到k的值.【详解】如图,连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F.∵由直线AB与反比例函数y的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF.又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴,∵tan∠CAB2,∴CF=2AE,OF=2OE.又∵AE•OE=2,CF•OF=|k|,∴|k|=CF•OF=2AE×2OE=4AE×OE=1,∴k=±1.∵点C在第二象限,∴k=﹣1.故答案为:﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解答本题的关键是求出CF•OF=1.解答该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.13、(2,﹣3)【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点.解题关键点:熟记求抛物线顶点坐标的公式.14、【分析】连接CE,根据矩形和圆的性质、勾股定理可得,从而可得△CED是等腰直角三角形,可得,即可根据阴影部分的面积等于扇形面积加三角形的面积求解即可.【详解】连接CE∵四边形ABCD是矩形,AB=2,AD=,∴∵以点C为圆心,以BC的长为半径画弧交AD于E∴∴∴△CED是等腰直角三角形∴∴∴阴影部分的面积故答案为:.【点睛】本题考查了阴影部分面积的问题,掌握矩形和圆的性质、勾股定理、等腰直角三角形的性质、扇形的面积公式、三角形面积公式是解题的关键.15、【分析】在OA上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB时,CP最小,由相似求出的最小值即可.【详解】解:如图,在OA上取使,∵,∴,在△和△QOC中,,∴△≌△QOC(SAS),∴∴当最小时,QC最小,过点作⊥AB,∵直线l:与坐标轴分别交于A,B两点,∴A坐标为:(0,8);B点(-4,0),∵,∴,.∵,∴,∴,∴线段CQ的最小值为.故答案为:.【点睛】本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.16、.【分析】根据菱形的面积等于对角线乘积的一半求解即可.【详解】四边形是菱形,,,菱形的面积为;故答案为:.【点睛】本题考查了菱形的性质,菱形的性质有:具有平行四边形的性质;菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半.17、【分析】根据平面直角坐标系中,关于原点的对称点的坐标变化规律,即可得到答案.【详解】∵平面直角坐标系中,关于原点的对称点的横纵坐标分别互为相反数,∴点关于原点对称点的坐标为.故答案是:.【点睛】本题主要考查平面直角坐标系中,关于原点的对称点的坐标变化规律,掌握关于原点的对称点的横纵坐标分别互为相反数,是解题的关键.18、【分析】先根据已知得出n=1-m,将其代入y中,得出y关于m的二次函数即可得出y的范围【详解】解:∵∴n=1-m,∴∵,∴,∴当m=时,y有最小值,当m=0时,y=1当m=1时,y=1∴故答案为:【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的性质是解题的关键三、解答题(共66分)19、(1)证明见解析,(2)证明见解析.【分析】(1)根据平行四边形的性质得:AD∥BC,AD=BC,又由平行四边形的判定得:四边形ACED是平行四边形,又由平行四边形的对边相等可得结论;(2)根据(1):四边形ACED是平行四边形,对角线互相平分可得:结合,从而证明AD=AB,即邻边相等,证明四边形为菱形,再证明从而∠ABC=90°,根据有一个角是直角的菱形是正方形可得结论.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AC∥DE,∴四边形ACED是平行四边形,∴AD=CE,∴BC=CE;(2)由(1)知:四边形ACED是平行四边形,∴DF=CF=AB,EF=AF,∵AD=2CF,∴AB=AD,四边形为平行四边形,四边形为菱形,∵AD∥EC,∴∴四边形ABCD是正方形.【点睛】此题考查了平行四边形的性质、正方形的判定、等腰三角形的判定与性质、平行线的性质,属于基础题,正确利用平行四边形的性质是解题关键.20、(1)1;(2)图见解析;(3)图象关于轴对称(或函数有最小值,答案不唯一);(4).【分析】(1)把x=-2代入函数解释式即可得m的值;

(2)描点、连线即可得到函数的图象;

(3)根据函数图象得到函数y=x2-2|x|的图象关于y轴对称;当x>1时,y随x的增大而增大;

(4)根据函数的图象即可得到a的取值范围-1<a<1.【详解】(1)把x=−2代入y=x2−2|x|得y=1,即m=1,故答案为:1;(2)如图所示;(3)由函数图象知:函数y=x2−2|x|的图象关于y轴对称(或函数有最小值,答案不唯一);(4)由函数图象知:∵关于x的方程x2−2|x|=a有4个实数根,∴a的取值范围是−1<a<1,故答案为:−1<a<1.【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的图象与性质,数形结合是解题的关键.21、(1)90°;(2)1.【分析】(1)根据题意∠ACE即为旋转角,只需求出∠ACE的度数即可.

(2)根据勾股定理可求出BC,由旋转的性质可知CE=CA=8,从而可求出BE的长度.【详解】解:(1)∵△DCE是△ABC绕着点C顺时针方向旋转得到的,此时点B、C、E在同一直线上,∴∠ACE=90°,即旋转角为90°,(2)在Rt△ABC中,∵AB=10,AC=8,∴BC==6,∵△ABC绕着点C旋转得到△DCE,∴CE=CA=8,∴BE=BC+CE=6+8=122、(1)1;(2)x1=1,x2=2.【分析】(1)利用特殊角的三角函数值得到原式=2×﹣1﹣(﹣1),然后进行二次根式的混合运算;(2)利用因式分解法解方程.【详解】(1)原式=2×﹣1﹣(﹣1)=﹣1﹣+1=1;(2)(x﹣1)(x﹣2)=1,x﹣1=1或x﹣2=1,∴方程的解为x1=1,x2=2.【点睛】此题主要考查锐角三角函数相关计算以及一元二次方程的求解,熟练掌握,即可解题.23、(1)见解析;(2).【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果;(2)利用,的值确定满足的个数,根据概率公式求出该事件的概率.【详解】解:(1)所有可能情况如下表,且它们的可能性相nm2341(1,2)(1,3)(1,4)2(2,2)(2,3)(2,4)3(3,2)(3,3)(3,4)由列表知,(m,n)有9种可能;(2)由(1)知,所有可能情况有9种,其中满足y=的有(2,3)和(3,2)两种,∴点A(m,n)在函数y=的图象上的概率为.【点睛】本题考查了列表法求概率,反比例函数图象上点的坐标特点.用到的知识点为:概率所求情况数与总情况数之比.24、(1);(2)当时,长度的最大值为,此时点的坐标为;(3)为直角三角形时点的坐标为或.【分析】(1)根据已知条件先求得,,将、坐标代入,再求得、,最后将其代入即可得解;(2)假设存在符合条件的点,并设点的横坐标,然后根据已知条件用含的式子表示出、的坐标,再利用坐标平面内距离公式求得、间的距离,将其进行配方即可进行判断并求解;(3)分、两种情况进行讨论,求得相应的符合要求的点坐标即可.【详解】解:(1)∵抛物线直线相交于、∴当时,;当时,,则∴,∴把代入得∴∴(2)假设存在符合条件的点,并设点的横坐标则、∴∵∴有最大值当时,长度的最大值为,此时点的坐标为(3)①当时∵直线垂直于直线∴可设直线的解析式为∵直线过点∴∴∴直线的解析式为∴∴或(不合题意,舍去)∴此时点的坐标为∴当时,∴此时点的坐标为;②当时∴点的纵坐标与点的纵坐标相等即∴∴解得(舍去)∴当时,∴此时点的坐标为.∴综上所述,符合条件的点存在,为直角三角形时点的坐标为或.故答案是:(1);(2)当时,长度的最大值为,此时点的坐标为;(3)为直角三角形时点的坐标为或.【点睛】本题考查了二次函数与一次函数的综合应用,涉及到了动点问题、最值问题、用待定系数法求解析式、方程组问题等,充分考查学生的综合运用能力和数形结合的思想方法.25、(1)正方形、矩形、直角梯形均可;(1)①证明见解析②证明见解析【分析】(1)根据定义和特殊四边形的性质,则有矩形或正方形或直角梯形;(1)①首先证明△ABC≌△DBE,得出AC=DE,BC=BE,连接CE,进一步得出△BCE为等边三角形;②利用等边三角形的性质,进一步得出△DCE是直角三角形,问题得解.【详解】解:(1)正方形、矩形、直角梯形均可;(1)①∵△ABC≌△DBE,∴BC=BE,∵∠CBE=60°,∴△BCE是等边三角形;②∵△ABC≌△DBE,∴BE=BC,AC=ED;∴△BCE为等边三角形,∴BC=CE,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,在Rt△DCE中,DC1+CE1=DE1,∴DC1+BC1=AC1.考点:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论