2022-2023学年新疆乌鲁木齐市沙依巴克区九年级数学第一学期期末质量检测模拟试题含解析_第1页
2022-2023学年新疆乌鲁木齐市沙依巴克区九年级数学第一学期期末质量检测模拟试题含解析_第2页
2022-2023学年新疆乌鲁木齐市沙依巴克区九年级数学第一学期期末质量检测模拟试题含解析_第3页
2022-2023学年新疆乌鲁木齐市沙依巴克区九年级数学第一学期期末质量检测模拟试题含解析_第4页
2022-2023学年新疆乌鲁木齐市沙依巴克区九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,直线////,若AB=6,BC=9,EF=6,则DE=()A.4 B.6 C.7 D.92.如图,把正三角形绕着它的中心顺时针旋转60°后,是()A. B. C. D.3.小明随机地在如图正方形及其内部区域投针,则针扎到阴影区域的概率是()A. B. C. D.4.如图,在菱形ABCD中,点E,F分别在AB,CD上,且,连接EF交BD于点O连接AO.若,,则的度数为()A.50° B.55° C.65° D.75°5.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y26.已知关于轴对称点为,则点的坐标为()A. B. C. D.7.抛物线经过点与,若,则的最小值为()A.2 B. C.4 D.8.己知a、b、c均不为0,且,若,则k=()A.-1 B.0 C.2 D.39.如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),点C在第二象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C的坐标不能表示为()A.(b+2a,2b) B.(﹣b﹣2c,2b)C.(﹣b﹣c,﹣2a﹣2c) D.(a﹣c,﹣2a﹣2c)10.在下列命题中,真命题是()A.相等的角是对顶角 B.同位角相等C.三角形的外角和是 D.角平分线上的点到角的两边相等二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,直线l:与坐标轴分别交于A,B两点,点C在x正半轴上,且OC=OB.点P为线段AB(不含端点)上一动点,将线段OP绕点O顺时针旋转90°得线段OQ,连接CQ,则线段CQ的最小值为___________.12.已知直线:交x轴于点A,交y轴于点B;直线:经过点B,交x轴于点C,过点D(0,-1)的直线分别交、于点E、F,若△BDE与△BDF的面积相等,则k=____.13.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为_____.14.某班级准备举办“迎鼠年,闹新春”的民俗知识竞答活动,计划A、B两组对抗赛方式进行,实际报名后,A组有男生3人,女生2人,B组有男生1人,女生4人,若从两组中各随机抽取1人,则抽取到的两人刚好是1男1女的概率是__________.15.若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为______.16.计算:=_________.17.若反比例函数的图象经过点(2,﹣2),(m,1),则m=_____.18.如图,圆是锐角的外接圆,是弧的中点,交于点,的平分线交于点,过点的切线交的延长线于点,连接,则有下列结论:①点是的重心;②;③;④,其中正确结论的序号是__________.三、解答题(共66分)19.(10分)如图,AB是的直径,AC为弦,的平分线交于点D,过点D的切线交AC的延长线于点E.求证:;.20.(6分)已知:在平面直角坐标系中,抛物线()交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2.(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设△PAD的面积为S,令W=t·S,当0<t<4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与Rt△AOC相似?如果存在,求点P的坐标;如果不存在,请说明理由.21.(6分)关于的一元二次方程.(1)求证:此方程必有两个不相等的实数根;(2)若方程有一根为1,求方程的另一根及的值.22.(8分)计算:()-1-cos45°-(2020+π)0+3tan30°23.(8分)如图,中,是的角平分线,,在边上,以为直径的半圆经过点,交于点.(1)求证:是的切线;(2)已知,的半径为,求图中阴影部分的面积.(最后结果保留根号和)24.(8分)如图,为反比例函数(x>0)图象上的一点,在轴正半轴上有一点,.连接,,且.(1)求的值;(2)过点作,交反比例函数(x>0)的图象于点,连接交于点,求的值.25.(10分)解方程:(1)x(2x﹣1)+2x﹣1=0(2)3x2﹣6x﹣2=026.(10分)图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据平行线分线段成比例定理列出比例式,代入数值进行计算即可.【详解】解:∵////,∴,∵AB=6,BC=9,EF=6,∴,∴DE=4故选:A【点睛】本题考查平行线分线段成比例定理,找准对应关系是解答此题的关键.2、A【分析】根据旋转的性质判断即可.【详解】解:∵把正三角形绕着它的中心顺时针旋转60°,∴图形A符合题意,故选:A.【点睛】本题考查的是图形的旋转,和学生的空间想象能力,熟练掌握旋转的性质是解题的关键.3、D【分析】根据几何概型的意义,求出圆的面积,再求出正方形的面积,算出其比值即可.【详解】解:设正方形的边长为2a,则圆的半径为a,则圆的面积为:,正方形的面积为:,∴针扎到阴影区域的概率是,故选:D.【点睛】本题考查几何概型的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积和总面积的比,这个比即事件(A)发生的概率.4、C【分析】由菱形的性质以及已知条件可证明△BOE≌△DOF,然后根据全等三角形的性质可得BO=DO,即O为BD的中点,进而可得AO⊥BD,再由∠ODA=∠DBC=25°,即可求出∠OAD的度数.【详解】∵四边形ABCD为菱形∴AB=BC=CD=DA,AB∥CD,AD∥BC∴∠ODA=∠DBC=25°,∠OBE=∠ODF,又∵AE=CF∴BE=DF在△BOE和△DOF中,∴△BOE≌△DOF(AAS)∴OB=OD即O为BD的中点,又∵AB=AD∴AO⊥BD∴∠AOD=90°∴∠OAD=90°-∠ODA=65°故选C.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,以及等腰三角形三线合一的性质,熟练掌握菱形的性质,得出全等三角形的判定条件是解题的关键.5、A【分析】根据函数解析式画出抛物线以及在图象上标出三个点的位置,根据二次函数图像的增减性即可得解.【详解】∵函数的解析式是,如图:∴对称轴是∴点关于对称轴的点是,那么点、、都在对称轴的右边,而对称轴右边随的增大而减小,于是.故选:A.【点睛】本题考查了二次函数图象的对称性以及增减性,画出函数图像是解题的关键,根据题意画出函数图象能够更直观的解答.6、D【分析】利用关于x轴对称的点坐标的特点即可解答.【详解】解:∵关于轴对称点为∴的坐标为(-3,-2)故答案为D.【点睛】本题考查了关于x轴对称的点坐标的特点,即识记关于x轴对称的点坐标的特点是横坐标不变,纵坐标变为相反数.7、D【分析】将点A、B的坐标代入解析式得到y1与y2,再根据,即可得到答案.【详解】将点A、B的坐标分别代入,得,,∵,∴,得:b,∴b的最小值为-4,故选:D.【点睛】此题考查二次函数点与解析式的关系,解不等式求取值,正确理解题意是解题的关键.8、D【解析】分别用含有k的代数式表示出2b+c,2c+a,2a+b,再相加即可求解.【详解】∵∴,,三式相加得,∵∴k=3.故选D.【点睛】本题考查了比的性质,解题的关键是求得2b+c=ak,2c+a=bk,2a+b=ck.9、C【分析】作CH⊥x轴于H,AC交OH于F.由△CBH∽△BAO,推出,推出BH=﹣2a,CH=2b,推出C(b+2a,2b),由题意可证△CHF∽△BOD,可得,推出,推出FH=2c,可得C(﹣b﹣2c,2b),因为2c+2b=﹣2a,推出2b=﹣2a﹣2c,b=﹣a﹣c,可得C(a﹣c,﹣2a﹣2c),由此即可判断;【详解】解:作CH⊥x轴于H,AC交OH于F.∵tan∠BAC==2,∵∠CBH+∠ABH=90°,∠ABH+∠OAB=90°,∴∠CBH=∠BAO,∵∠CHB=∠AOB=90°,∴△CBH∽△BAO,∴,∴BH=﹣2a,CH=2b,∴C(b+2a,2b),由题意可证△CHF∽△BOD,∴,∴,∴FH=2c,∴C(﹣b﹣2c,2b),∵2c+2b=﹣2a,∴2b=﹣2a﹣2c,b=﹣a﹣c,∴C(a﹣c,﹣2a﹣2c),故选C.【点睛】本题考查解直角三角形、坐标与图形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考选择题中的压轴题.10、C【分析】根据对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质逐项判断即可.【详解】A、由对顶角的定义“如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角”可得,对顶角必相等,但相等的角未必是对顶角,此项不是真命题B、只有当两直线平行,同位角必相等,此项不是真命题C、根据内角和定理可知,任意多边形的外角和都为,此项是真命题D、由角平分线的性质可知,角平分线上的点到角的两边距离相等,此项不是真命题故选:C.【点睛】本题考查了对顶角的定义、同位角的定义、三角形的外角和、角平分线的性质,熟记各定义和性质是解题关键.二、填空题(每小题3分,共24分)11、【分析】在OA上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB时,CP最小,由相似求出的最小值即可.【详解】解:如图,在OA上取使,∵,∴,在△和△QOC中,,∴△≌△QOC(SAS),∴∴当最小时,QC最小,过点作⊥AB,∵直线l:与坐标轴分别交于A,B两点,∴A坐标为:(0,8);B点(-4,0),∵,∴,.∵,∴,∴,∴线段CQ的最小值为.故答案为:.【点睛】本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.12、【分析】先利用一次函数图像相关求出A、B、C的坐标,再根据△BDE与△BDF的面积相等,得到点E、F的横坐标相等,从而进行分析即可.【详解】解:由直线:交x轴于点A,交y轴于点B;直线:经过点B,交x轴于点C,求出A、B、C的坐标分别为,将点D(0,-1)代入得到,又△BDE与△BDF的面积相等,即知点E、F的横坐标相等,且直线分别交、于点E、F,可知点E、F为关于原点对称,即知坡度为45°,斜率为.故k=.【点睛】本题考查一次函数图像性质与几何图形的综合问题,熟练掌握一次函数图像性质以及等面积三角形等底等高的概念进行分析是解题关键.13、.【分析】根据题意,用的面积减去扇形的面积,即为所求.【详解】由题意可得,AB=2BC,∠ACB=90°,弓形BD与弓形AD完全一样,则∠A=30°,∠B=∠BCD=60°,∵CB=4,∴AB=8,AC=4,∴阴影部分的面积为:=,故答案为:.【点睛】本题考查不规则图形面积的求法,属中档题.14、【分析】利用列表法把所有情况列出来,再用概率公式求解即可.【详解】列表如下根据表格可知共有25种可能的情况出现,其中抽取到的两人刚好是1男1女的有14种情况∴抽取到的两人刚好是1男1女的概率是故答案为:.【点睛】本题考查了概率的问题,掌握列表法和概率公式是解题的关键.15、-1【分析】根据关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根可知△=0,求出m的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.16、7【分析】本题先化简绝对值、算术平方根以及零次幂,最后再进行加减运算即可.【详解】解:=6-3+1+3=7【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.17、-1【分析】根据反比例函数图象上点的坐标特征解答.【详解】解:设反比例函数的图象为y=,把点(2,﹣2)代入得k=﹣1,则反比例函数的图象为y=﹣,把(m,1)代入得m=﹣1.故答案为﹣1.【点睛】本题考查反比例函数图象的性质,关键在于熟记性质.18、②④【分析】根据三角形重心的定义,即可判断①;连接OD,根据垂径定理和切线的性质定理,即可判断②;由∠ACD=∠BAD,∠CAF=∠BAF,得∠AFD=∠FAD,若,可得∠EAF=∠ADF=∠BAC,进而得,即可判断③;易证∆ACD~∆EAD,从而得,结合DF=DA,即可判断④.【详解】∵是弧的中点,∴∠ACD=∠BCD,即:CD是∠ACB的平分线,又∵AF是的平分线,∴点F不是的重心,∴①不符合题意,连接OD,∵是弧的中点,∴OD⊥AB,∵PD与圆相切,∴OD⊥PD,∴,∴②符合题意,∵是弧的中点,∴∠ACD=∠BAD,∵AF是的平分线,∴∠CAF=∠BAF,∴∠CAF+∠ACD=∠BAF+∠BAD,即:∠AFD=∠FAD,若,则∠AFD=∠AEF,∴∠AFD=∠AEF=∠FAD,∴∠EAF=∠ADF=∠BAC,∴.即:只有当时,才有.∴③不符合题意,∵∠ACD=∠BAD,∠D=∠D,∴∆ACD~∆EAD,∴,又∵∠AFD=∠FAD,∴DF=DA,∴,∴④符合题意.故答案是:②④.【点睛】本题主要考查圆的性质与相似三角形的综合,掌握垂径定理,圆周角定理以及相似三角形的判定与性质定理,是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【分析】(1)连接OD,根据等腰三角形的性质结合角平分线的性质可得出∠CAD=∠ODA,利用“内错角相等,两直线平行”可得出AE//OD,结合切线的性质即可证出DE⊥AE;(2)过点D作DM⊥AB于点M,连接CD、DB,根据角平分线的性质可得出DE=DM,结合AD=AD、∠AED=∠AMD=90°即可证出△DAE≌△DAM(SAS),根据全等三角形的性质可得出AE=AM,由∠EAD=∠MAD可得出,进而可得出CD=BD,结合DE=DM可证出Rt△DEC≌Rt△DMB(HL),根据全等三角形的性质可得出CE=BM,结合AB=AM+BM即可证出AE+CE=AB.【详解】连接OD,如图1所示,,AD平分,,,,,是的切线,,,;过点D作于点M,连接CD、DB,如图2所示,平分,,,,在和中,,≌,,,,,在和中,,≌,,.【点睛】本题考查了全等三角形的判定与性质、切线的性质、角平分线的性质、等腰三角形的性质、平行线的判定与性质以及圆周角定理,解题的关键是:(1)利用平行线的判定定理找出AE//OD;(2)利用全等三角形的性质找出AE=AM、CE=BM.20、(1),D(-2,4).(2)①当t=3时,W有最大值,W最大值=1.②存在.只存在一点P(0,2)使Rt△ADP与Rt△AOC相似.【解析】(1)由抛物线的对称轴求出a,就得到抛物线的表达式了;

(2)①下面探究问题一,由抛物线表达式找出A,B,C三点的坐标,作DM⊥y轴于M,再由面积关系:SPAD=S梯形OADM-SAOP-SDMP得到t的表达式,从而W用t表示出来,转化为求最值问题.

②难度较大,运用分类讨论思想,可以分三种情况:

(1)当∠P1DA=90°时;(2)当∠P2AD=90°时;(3)当AP3D=90°时。【详解】解:(1)∵抛物线y=ax2-x+3(a≠0)的对称轴为直线x=-2.∴D(-2,4).(2)探究一:当0<t<4时,W有最大值.

∵抛物线交x轴于A、B两点,交y轴于点C,

∴A(-6,0),B(2,0),C(0,3),

∴OA=6,OC=3.

当0<t<4时,作DM⊥y轴于M,

则DM=2,OM=4.

∵P(0,t),

∴OP=t,MP=OM-OP=4-t.

∵S三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2t

∴W=t(12-2t)=-2(t-3)2+1

∴当t=3时,W有最大值,W最大值=1.

探究二:

存在.分三种情况:

①当∠P1DA=90°时,作DE⊥x轴于E,则OE=2,DE=4,∠DEA=90°,

∴AE=OA-OE=6-2=4=DE.

∴∠DAE=∠ADE=45°,∴∠P1DE=∠P1DA-∠ADE=90°-45°=45度.

∵DM⊥y轴,OA⊥y轴,

∴DM∥OA,

∴∠MDE=∠DEA=90°,

∴∠MDP1=∠MDE-∠P1DE=90°-45°=45度.

∴P1M=DM=2,此时又因为∠AOC=∠P1DA=90°,

∴Rt△ADP1∽Rt△AOC,

∴OP1=OM-P1M=4-2=2,

∴P1(0,2).

∴当∠P1DA=90°时,存在点P1,使Rt△ADP1∽Rt△AOC,

此时P1点的坐标为(0,2)

②当∠P2AD=90°时,则∠P2AO=45°,∴△P2AD与△AOC不相似,此时点P2不存在.③当∠AP3D=90°时,以AD为直径作⊙O1,则⊙O1的半径圆心O1到y轴的距离d=4.

∵d>r,

∴⊙O1与y轴相离.

不存在点P3,使∠AP3D=90度.

∴综上所述,只存在一点P(0,2)使Rt△ADP与Rt△AOC相似.21、(1)证明见解析;(2)另一根为4,为.【分析】(1)判断是否大于0即可得出答案;(2)将x=1代入方程求解即可得出答案.【详解】解:(1)∵∴∵∴故此方程必有两个不相等的实数根;(2)把代入原方程,∴,即,,∴,故方程的另一根为4,为.【点睛】本题考查的是一元二次方程,难度适中,需要熟练掌握一元二次方程根与系数的关系.22、.【分析】根据负指数次幂的性质、45°的余弦值、任何非0数的0次幂都等于1和30°的正切值计算即可.【详解】解:()-1-cos45°-(2020+π)0+3tan30°=2--1+=2-1-1+=【点睛】此题考查的是实数的混合运算,掌握负指数次幂的性质、45°的余弦值、任何非0数的0次幂都等于1和30°的正切值是解决此题的关键.23、(1)证明见解析;(2)6﹣.【分析】(1)连接OE.根据OB=OE得到∠OBE=∠OEB,然后再根据BE是△ABC的角平分线得到∠OEB=∠EBC,从而判定OE∥BC,最后根据∠C=90°得到∠AEO=∠C=90°证得结论AC是⊙O的切线.(2)连接OF,利用S阴影部分=S梯形OECF−S扇形EOF求解即可.【详解】(1)连接OE.∵OB=OE∴∠OBE=∠OEB∵BE是△ABC的角平分线∴∠OBE=∠EBC∴∠OEB=∠EBC∴OE∥BC∵∠C=90°∴∠AEO=∠C=90°又∵OE为半径∴AC是圆O的切线(2)连接OF.∵圆O的半径为4,∠A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论