版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如果,那么的值等于()A. B. C. D.2.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大 B.S的值减小C.S的值先增大,后减小 D.S的值不变3.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于()A.3cm B.4cm C.5cm D.6cm4.如图,A、B、C是⊙O上的三点,已知∠O=50°,则∠C的大小是()A.50° B.45° C.30° D.25°5.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(
)A.9人 B.10人 C.11人 D.12人6.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为()A.1 B.2 C. D.7.若,则下列各式一定成立的是()A. B. C. D.8.若,那么的值是()A. B. C. D.9.若点,是函数上两点,则当时,函数值为()A.2 B.3 C.5 D.1010.如图,若点M是y轴正半轴上的任意一点,过点M作PQ∥x轴,分别交函数y=(y>0)和y=(y>0)的图象于点P和Q,连接OP和OQ,则下列结论正确是()A.∠POQ不可能等于90°B.C.这两个函数的图象一定关于y轴对称D.△POQ的面积是11.下列事件为必然事件的是()A.打开电视机,它正在播广告B.a取任一个实数,代数式a2+1的值都大于0C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上12.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=2二、填空题(每题4分,共24分)13.如图,点的坐标为,过点作轴的垂线交过原点与轴夹角为的直线于点,以原点为圆心,的长为半径画弧交轴正半轴于点;再过点作轴的垂线交直线于点,以原点为圆心,以的长为半径画弧交轴正半轴于点……按此做法进行下去,则点的坐标是_____.14.若关于x的一元二次方程的一个根是0,则另一个根是________.15.已知⊙的半径为4,⊙的半径为R,若⊙与⊙相切,且,则R的值为________.16.已知某个正六边形的周长为,则这个正六边形的边心距是__________.17.计算:cos45°=______.18.如图,在ABCD中,点E是AD边上一点,AE:ED=1:2,连接AC、BE交于点F.若S△AEF=1,则S四边形CDEF=_______.三、解答题(共78分)19.(8分)在△ABC中,∠C=90°.(1)已知∠A=30°,BC=2,求AC、AB的长;(2)己知tanA=,AB=6,求AC、BC的长.20.(8分)如图所示,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1,直接写出点A1,B1的坐标;(2)在旋转过程中,点B经过的路径的长.21.(8分)“辑里湖丝”是世界闻名最好的蚕丝,是浙江省的传统丝织品,属于南浔特产,南浔某公司用辑丝为原料生产的新产品丝巾,其生产成本为20元/条.此产品在网上的月销售量y(万件)与售价x(元/件)之间的函数关系为y=﹣0.2x+10(由于受产能限制,月销售量无法超过4万件).(1)若该产品某月售价为30元/件时,则该月的利润为多少万元?(2)若该产品第一个月的利润为25万元,那么该产品第一个月的售价是多少?(3)第二个月,该公司将第一个月的利润25万元(25万元只计入第二个月成本)投入研发,使产品的生产成本降为18元/件.为保持市场占有率,公司规定第二个月产品售价不超过第一个月的售价.请计算该公司第二个月通过销售产品所获的利润w为多少万元?22.(10分)如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为(3,2)、(1,3).△AOB绕点O逆时针旋转90º后得到△A1OB1.(1)在网格中画出△A1OB1,并标上字母;(2)点A关于O点中心对称的点的坐标为;(3)点A1的坐标为;(4)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.23.(10分)已知二次函数的图象过点A(1,0),B(-2,0),C(0,2),求这个函数的解析式.24.(10分)某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y关于x的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.25.(12分)如图,平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=﹣在第二象限内的图象相交于点A,与x轴的负半轴交于点B,与y轴的负半轴交于点C.(1)求∠BCO的度数;(2)若y轴上一点M的纵坐标是4,且AM=BM,求点A的坐标;(3)在(2)的条件下,若点P在y轴上,点Q是平面直角坐标系中的一点,当以点A、M、P、Q为顶点的四边形是菱形时,请直接写出点Q的坐标.26.如图,在中,AD是BC边上的高,。(1)求证:AC=BD(2)若,求AD的长。
参考答案一、选择题(每题4分,共48分)1、D【分析】依据,即可得到a=b,进而得出的值.【详解】∵,∴3a﹣3b=5b,∴3a=8b,即a=b,∴==.故选D.【点睛】本题考查了比例的性质,解决问题的关键是运用内项之积等于外项之积.2、D【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.3、D【分析】根据垂径定理可知AC的长,再根据勾股定理即可求出OC的长.【详解】解:连接OA,如图:∵AB=16cm,OC⊥AB,∴AC=AB=8cm,在RtOAC中,OC===6(cm),故选:D.【点睛】本题考查的是垂径定理、勾股定理,熟练掌握垂径定理,构造出直角三角形是解答此题的关键.4、D【分析】直接根据圆周角定理即可得出结论.【详解】解:∵∠C与∠AOB是同弧所对的圆周角与圆心角,
∵∠AOB=2∠C=50°,
∴∠C=∠AOB=25°.
故选:D.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.5、C【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:
x(x-1)=55,
化简得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.6、C【分析】作D点关于AB的对称点E,连接OC.OE、CE,CE交AB于P',如图,利用对称的性质得到P'E=P'D,,再根据两点之间线段最短判断点P点在P'时,PC+PD的值最小,接着根据圆周角定理得到∠BOC=60°,∠BOE=30°,然后通过证明△COE为等腰直角三角形得到CE的长即可.【详解】作D点关于AB的对称点E,连接OC、OE、CE,CE交AB于P',如图,∵点D与点E关于AB对称,∴P'E=P'D,,∴P'C+P'D=P'C+P'E=CE,∴点P点在P'时,PC+PD的值最小,最小值为CE的长度.∵∠BOC=2∠CAB=2×30°=60°,而D为的中点,∴∠BOE∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE为等腰直角三角形,∴CEOC,∴PC+PD的最小值为.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7、B【分析】由等式的两边都除以,从而可得到答案.【详解】解:等式的两边都除以:,故选B.【点睛】本题考查的是把等积式化为比例式的方法,考查的是比的基本性质,等式的基本性质,掌握以上知识是解题的关键.8、A【分析】根据,可设a=2k,则b=3k,代入所求的式子即可求解.【详解】∵,∴设a=2k,则b=3k,则原式==.故选:A.【点睛】本题考查了比例的性质,根据,正确设出未知数是本题的关键.9、B【分析】根据点A(x1,5),B(x2,5)是函数y=x2﹣2x+1上两对称点,可求得x=x1+x2=2,把x=2代入函数关系式即可求解.【详解】∵点A(x1,5),B(x2,5)是函数y=x2﹣2x+1上两对称点,对称轴为直线x=1,∴x1+x2=2×1=2,∴x=2,∴把x=2代入函数关系式得y=22﹣2×2+1=1.故选:B.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,以及二次函数的性质.求出x1+x2的值是解答本题的关键.10、D【分析】利用特例对A进行判断;根据反比例函数的几何意义得到S△OMQ=OM•QM=﹣k1,S△OMP=OM•PM=k2,则可对B、D进行判断;利用关于y轴对称的点的坐标特征对C进行判断.【详解】解:A、当k1=3,k2=﹣,若Q(﹣1,),P(3,),则∠POQ=90°,所以A选项错误;B、因为PQ∥x轴,则S△OMQ=OM•QM=﹣k1,S△OMP=OM•PM=k2,则=﹣,所以B选项错误;C、当k2=﹣k1时,这两个函数的图象一定关于y轴对称,所以C选项错误;D、S△POQ=S△OMQ+S△OMP=|k1|+|k2|,所以D选项正确.故选:D.【点睛】本题考查了反比例函数比例系数的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.11、B【分析】由题意直接根据事件发生的可能性大小进行判断即可.【详解】解:A、打开电视机,它正在播广告是随机事件;B、∵a2≥0,∴a2+1≥1,∴a取任一个实数,代数式a2+1的值都大于0是必然事件;C、明天太阳从西方升起是不可能事件;D、抛掷一枚硬币,一定正面朝上是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.注意掌握必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、C【解析】试题解析:x(x+1)=0,
⇒x=0或x+1=0,
解得x1=0,x1=-1.
故选C.二、填空题(每题4分,共24分)13、【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点B2019的坐标.【详解】∵过点A1作x轴的垂线交过原点与x轴夹角为的直线l于点B1,OA1=2,∴∠B1OA1=60,∴∠OB1A1=30∴OB1=OA1=4,B1A1=∴B1(2,)∴直线y=x,以原O为圆心,OB1长为半径画弧x轴于点A2,则OA2=OB1,∵OA2=4,∴点A2的坐标为(4,0),∴B2的坐标为(4,4),即(22,22×),OA3=∴点A3的坐标为(8,0),B3(8,8),……,以此类推便可得出点A2019的坐标为(22019,0),点B2019的坐标为;故答案为:.【点睛】本题主要考查了点的坐标规律、一次函数图象上点的坐标特征、勾股定理等知识;由题意得出规律是解题的关键.14、1【解析】设x1,x2是关于x的一元二次方程x2−x+k=0的两个根,∵关于x的一元二次方程x2−x+k=0的一个根是0,∴由韦达定理,得x1+x2=1,即x2=1,即方程的另一个根是1.故答案为1.15、6或14【解析】⊙O1和⊙O2相切,有两种情况需要考虑:内切和外切.内切时,⊙O2的半径=圆心距+⊙O1的半径;外切时,⊙O2的半径=圆心距-⊙O1的半径.【详解】若⊙与⊙外切,则有4+R=10,解得:R=6;若⊙与⊙内切,则有R-4=10,解得:R=14,故答案为6或14.16、【分析】首先得出正六边形的边长,构建直角三角形,利用直角三角形的边角关系即可求出.【详解】解:如图作正六边形外接圆,连接OA,作OM⊥AB垂足为M,得到∠AOM=30°∵圆内接正六边形ABCDEF的周长为6∴AB=1则AM=,OA=1因而OM=OA·=正六边形的边心距是【点睛】此题主要考查了正多边形和圆,正确掌握正多边形的性质是解题的关键.17、【分析】根据特殊角的三角函数值计算即可.【详解】解:根据特殊角的三角函数值可知:cos45°=,故答案为.【点睛】本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.18、11【分析】先根据平行四边形的性质易得,根据相似三角形的判定可得△AFE∽△CFB,再根据相似三角形的性质得到△BFC的面积,,进而得到△AFB的面积,即可得△ABC的面积,再根据平行四边形的性质即可得解.【详解】解:∵AE:ED=1:2,∴AE:AD=1:3,∵AD=BC,∴AE:BC=1:3,∵AD∥BC,∴△AFE∽△CFB,∴,∴,∴S△BCF=9,∵,∴S△AFB=3,∴S△ACD=S△ABC=S△BCF+S△AFB=12,∴S四边形CDEF=S△ACD﹣S△AEF=12﹣1=11.故答案为11.【点睛】本题主要考查相似三角形的判定与性质,平行四边形的性质等,解此题的关键在于熟练掌握其知识点.三、解答题(共78分)19、(1)AB=4,AC=2;(2)BC=2,AC=1.【分析】(1)根据含30°角的直角三角形的性质即可得到结论;(2)解直角三角形即可得到结论.【详解】(1)在△ABC中,∠C=90°,∠A=30°,BC=2,∴AB=2BC=4,AC=BC=2;(2)在△ABC中,∠C=90°,tanA=,AB=6,∴=,∴设BC=k,AC=4k,∴AB==3k=6,∴k=2,∴BC=k=2,AC=4k=1.【点睛】本题考查了含30°角的直角三角形,解直角三角形,正确的理解题意是解题的关键.20、(1)A1(﹣3,3),B1(﹣2,1);(2).【解析】试题分析:(1)根据网格结构找出点绕点逆时针旋转90°后的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;
(2)利用勾股定理列式求出的长,再利用弧长公式列式计算即可得解;试题解析:(1)如图,(2)由可得:21、(1)该月的利润为40万元;(1)该产品第一个月的售价是45元;(3)该公司第二个月通过销售产品所获的利润w至少为13万元,最多获利润16.1万元.【分析】(1)根据题意销售量与售价的关系式代入值即可求解;(1)根据月利润等于销售量乘以单件利润即可求解;(3)根据根据(1)中的关系利用二次函数的性质即可求解.【详解】(1)根据题意,得:当x=30时,y=﹣0.1×30+10=4,4×10=40,答:该月的利润为40万元.(1)15=(x﹣10)(﹣0.1x+10),解得x1=45,x1=15(月销售量无法超过4万件,舍去).答:该产品第一个月的售价是45元.(3)∵由于受产能限制,月销售量无法超过4万件,且公司规定第二个月产品售价不超过第一个月的售价.∴30≤x≤45,w=y(x﹣18)﹣15=(﹣0.1x+10)(x﹣18)﹣15=﹣0.1x1+13.6x﹣105=﹣0.1(x﹣34)1+16.1.当30≤x≤45时,13≤w≤16.1.答:该公司第二个月通过销售产品所获的利润w至少为13万元,最多获利润16.1万元.【点睛】本题主要考查了二次函数的应用,解决本题的关键是掌握销售问题各个量之间的关系并熟练运用二次函数.22、(1)见解析;(2)(-3,-2);(3)(-2,3);(4)【分析】(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)根据关于O点中心对称的点的坐标的特点直接写出答案即可;(3)根据平面直角坐标系写出点A1的坐标即可;(4)利用勾股定理列式求出OB,再根据弧长公式列式计算即可得解.【详解】(1)△A1OB1如图所示;(2)点A关于O点中心对称的点的坐标为(-3,-2);(3)点A1的坐标为(﹣2,3);(4)由勾股定理得,OB=,弧BB1的长为:.考点:1.作图-旋转变换;2.弧长的计算.23、y=-x2-x+2【分析】根据二次函数图像经过三点,假设函数解析式为:,用待定系数法得到三元一次方程组,求解即可得到答案;【详解】设二次函数解析式为,∵二次函数的图象过点A(1,0),B(-2,0),C(0,2),∴得到方程组:,即:,解得:∴方程组的解为:因此二次函数解析式为:y=-x2-x+2;【点睛】本题主要考查了用待定系数法求二次函数的解析式,掌握用消元法求解三元一次方程组是解题的关键.24、(1)①y=-10x+700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(1)1.【分析】(1)①将点(40,300)、(45,150)代入一次函数表达式:y=kx+b即可求解;②设该商品的售价是x元,则月销售利润w=y(x-30),求解即可;(1)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w取得最大值1400,解关于m的方程即可.【详解】(1)①解:设y=kx+b(k,b为常数,k≠0)根据题意得:,解得:∴y=-10x+700②解:当该商品的进价是40-3000÷300=30元设当该商品的售价是x元/件时,月销售利润为w元根据题意得:w=y(x-30)=(x-30)(-10x+700)=-10x1+1000x-11000=-10(x-50)1+4000∴当x=50时w有最大值,最大值为4000答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(1)由题意得:
w=[x-(m+30)](-10x+700)
=-10x1+(1000+10m)x-11000-700m
对称轴为x=50+
∵m>0
∴50+>50
∵商家规定该运动服售价不得超过40元/件
∴由二次函数的性质,可知当x=40时,月销售量最大利润是1400元
∴-10×401+(1000+10m)×40-11000-700m=1400
解得:m=1
∴m的值为1.【点睛】本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.25、(1)∠BCO=45°;(2)A(﹣4,1);(3)点Q坐标为(﹣4,﹣4)或(﹣4,6)或(﹣4,)或(4,1).【分析】(1)证明△OBC是等腰直角三角形即可解决问题;(2)如图1中,作MN⊥AB于N.根据一次函数求出交点N的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度园林绿化设计与施工合同
- 2024年度店铺货架租赁与销售分成合同
- 2024年度房屋买卖合同标的、房屋位置、房屋面积及房屋价格详细规定
- 衣帽架市场需求与消费特点分析
- 2024年度国际集装箱运输服务合同
- 2024年度影视版权转让合同:标的为电视剧版权交易
- 天线用滤波器市场发展现状调查及供需格局分析预测报告
- 2024年度版权转让合同详细内容
- 2024年度物流行业大数据分析与应用合作合同
- 2024年度教育设备采购与技术支持合同
- 混凝土主要技术指标性能及工艺设计
- 《有效备课、上课、听课、评课》读书笔记
- 高压氧舱安装施工方案
- 中药提取车间自动化系统验证
- 医疗机构从业人员登记表
- 动词过去式默写
- 部编五年级道德与法治主动拒绝烟酒与毒品说课稿及反思
- 高中数学专题讲座数列
- 常见职业危害相应职业禁忌症(简表)
- Spelling-Bee活动方案(中)
- 老挝10大经济特区
评论
0/150
提交评论