![2022-2023学年黑龙江大庆市三站中学数学九年级第一学期期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view/9bcef631b5c8e7d7c74e6e58d716609b/9bcef631b5c8e7d7c74e6e58d716609b1.gif)
![2022-2023学年黑龙江大庆市三站中学数学九年级第一学期期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view/9bcef631b5c8e7d7c74e6e58d716609b/9bcef631b5c8e7d7c74e6e58d716609b2.gif)
![2022-2023学年黑龙江大庆市三站中学数学九年级第一学期期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view/9bcef631b5c8e7d7c74e6e58d716609b/9bcef631b5c8e7d7c74e6e58d716609b3.gif)
![2022-2023学年黑龙江大庆市三站中学数学九年级第一学期期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view/9bcef631b5c8e7d7c74e6e58d716609b/9bcef631b5c8e7d7c74e6e58d716609b4.gif)
![2022-2023学年黑龙江大庆市三站中学数学九年级第一学期期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view/9bcef631b5c8e7d7c74e6e58d716609b/9bcef631b5c8e7d7c74e6e58d716609b5.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.把抛物线向右平移l个单位,然后向下平移3个单位,则平移后抛物线的解析式为()A. B.C. D.2.如图,,,以下结论成立的是()A. B.C. D.以上结论都不对3.刘徽是我国古代一位伟大的数学家,他的杰作《九章算术注》和《海宝算经》是中国宝贵的文化遗产.他所提出的割圆术可以估算圆周率.割圆术是依次用圆内接正六边形、正十二边形…去逼近圆.如图,的半径为1,则的内接正十二边形面积为()A.1 B.3 C.3.1 D.3.144.如图,将绕点逆时针旋转得到,则下列说法中,不正确的是()A. B. C. D.5.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根为0,则m为()A.0 B.1 C.﹣1 D.1或﹣16.老师出示了如图所示的小黑板上的题后,小华说:过点;小明说:;小颖说:轴被抛物线截得的线段长为2,三人的说法中,正确的有()A.1个 B.2个 C.3个 D.0个7.下列事件中,是随机事件的是()A.任意画两个圆,这两个圆是等圆 B.⊙O的半径为5,OP=3,点P在⊙O外C.直径所对的圆周角为直角 D.不在同一条直线上的三个点确定一个圆8.如图,在△ABC中,DE∥BC,若=,则的值为()A. B. C. D.9.若反比例函数的图象在每一条曲线上都随的增大而减小,则的取值范围是()A. B. C. D.10.如果,两点都在反比例函数的图象上,那么与的大小关系是()A. B. C. D.二、填空题(每小题3分,共24分)11.抛物线y=(x-2)2+3的顶点坐标是______.12.如图,是的切线,为切点,连接.若,则=__________.13.将抛物线C1:y=x2﹣4x+1先向左平移3个单位,再向下平移2个单位得到将抛物线C2,则抛物线C2的解析式为:_____.14.如图,二次函数的图象记为,它与轴交于点,;将绕点旋转180°得,交轴于点;将绕点旋转180°得,交轴于点;……如此进行下去,得到一条“波浪线”.若在这条“波浪线”上,则____.15.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.16.如图,四边形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若△PAB与△PCD是相似三角形,则BP的长为_____________17.如图,点、、在上,若,,则________.18.圆心角是60°且半径为2的扇形面积是______三、解答题(共66分)19.(10分)在平面直角坐标系中,平移一条抛物线,如果平移后的新抛物线经过原抛物线顶点,且新抛物线的对称轴是y轴,那么新抛物线称为原抛物线的“影子抛物线”.(1)已知原抛物线表达式是,求它的“影子抛物线”的表达式;(2)已知原抛物线经过点(1,0),且它的“影子抛物线”的表达式是,求原抛物线的表达式;(3)小明研究后提出:“如果两条不重合的抛物线交y轴于同一点,且它们有相同的“影子抛物线”,那么这两条抛物线的顶点一定关于y轴对称.”你认为这个结论成立吗?请说明理由.20.(6分)新能源汽车已逐渐成为人们的交通工具,据某市某品牌新能源汽车经销商1至3月份统计,该品牌新能源汽车1月份销售150辆,3月份销售216辆.(1)求该品牌新能源汽车销售量的月均增长率;(2)若该品牌新能源汽车的进价为6.3万元/辆,售价为6.8万元/辆,则该经销商1至3月份共盈利多少万元?21.(6分)元旦了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,求九(2)班有多少个同学?22.(8分)如图,中,,以为直径作半圆交与点,点为的中点,连结.(1)求证:是半圆的切线;(2)若,,求的长.23.(8分)矩形中,线段绕矩形外一点顺时针旋转,旋转角为,使点的对应点落在射线上,点的对应点在的延长线上.(1)如图1,连接、、、,则与的大小关系为______________.(2)如图2,当点位于线段上时,求证:;(3)如图3,当点位于线段的延长线上时,,,求四边形的面积.24.(8分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B,(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.25.(10分)如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.26.(10分)为倡导绿色出行,某市推行“共享单车”公益活动,在某小区分别投放甲、乙两种不同款型的共享单车,甲型、乙型单车投放成本分别为元和元,乙型车的成本单价比甲型车便宜元,但两种类型共享单车的投放量相同,求甲型共享单车的单价是多少元?
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据题意原抛物线的顶点坐标为(0,0),根据平移规律得平移后抛物线顶点坐标为(1,-3),根据抛物线的顶点式求解析式.【详解】解:抛物线形平移不改变解析式的二次项系数,平移后顶点坐标为(1,-3),∴平移后抛物线解析式为.故选:D.【点睛】本题考查抛物线的平移与抛物线解析式的联系,关键是把抛物线的平移转化为顶点的平移,利用顶点式求解析式.2、C【分析】根据已知条件结合相似三角形的判定定理逐项分析即可.【详解】解:∵∠AOD=90°,设OA=OB=BC=CD=x∴AB=x,AC=x,AD=x,OC=2x,OD=3x,BD=2x,∴,∴∴.故答案为C.【点睛】本题主要考查了相似三角形的判定,①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.3、B【分析】根据直角三角形的30度角的性质以及三角形的面积公式计算即可解决问题.【详解】解:如图,作AC⊥OB于点C.∵⊙O的半径为1,∴圆的内接正十二边形的中心角为360°÷12=30°,∴过A作AC⊥OB,∴AC=OA=,∴圆的内接正十二边形的面积S=12××1×=3.故选B.【点睛】此题主要考查了正多边形和圆,三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4、A【分析】由旋转的性质可得△ABC≌△AB'C',∠BAB'=∠CAC'=60°,AB=AB',即可分析求解.【详解】∵将△ABC绕点A逆时针旋转60°得到△AB′C′,∴△ABC≌△AB'C',∠BAB'=∠CAC'=60°,∴AB=AB',∠CAB'<∠BAB'=60°,故选:A.【点睛】本题考查了旋转的性质,全等三角形的性质,熟练运用旋转的性质是关键.5、C【分析】将0代入一元二次方程中建立一个关于m的一元二次方程,解方程即可,再根据一元二次方程的定义即可得出答案.【详解】解:依题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1.故选:C.【点睛】本题主要考查一元二次方程的根及一元二次方程的定义,准确的运算是解题的关键.6、B【分析】根据图上给出的条件是与x轴交于(1,0),叫我们加个条件使对称轴是,意思就是抛物线的对称轴是是题目的已知条件,这样可以求出的值,然后即可判断题目给出三人的判断是否正确.【详解】∵抛物线过(1,0),对称轴是,∴解得,
∴抛物线的解析式为,
当时,,所以小华正确;∵,所以小明正确;
抛物线被轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y轴或,此时答案不唯一,所以小颖错误.综上,小华、小明正确,
故选:B.【点睛】本题考查了抛物线与轴的交点以及待定系数法求二次函数解析式,利用待定系数法求出抛物线的解析式是解题的关键.7、A【分析】随机事件就是可能发生也可能不发生的事件,根据定义即可判断.【详解】A.任意画两个圆,这两个圆是等圆,属于随机事件,符合题意;B.⊙O的半径为5,OP=3,点P在⊙O外,属于不可能事件,不合题意;C.直径所对的圆周角为直角,属于必然事件,不合题意;D.不在同一条直线上的三个点确定一个圆,属于必然事件,不合题意;故选:A.【点睛】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、A【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵=,∴,∵DE∥BC,∴,故选:A.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.9、A【分析】根据反比例函数的图象和性质,当反比例函数y的图象的每一条曲线上,y都随x的增大而减小,可知,k﹣1>0,进而求出k>1.【详解】∵反比例函数y的图象的每一条曲线上,y都随x的增大而减小,∴k﹣1>0,∴k>1.故选:A.【点睛】本题考查了反比例函数的图象和性质,对于反比例函数y,当k>0时,在每个象限内,y随x的增大而减小;当k<0时,在每个象限内,y随x的增大而增大.10、C【分析】直接把点A(1,y1),B(3,y1)两点代入反比例函数中,求出y1与y1的值,再比较其大小即可.【详解】解:∵A(1,y1),B(3,y1)两点都在反比例函数的图象上;∴y1>y1.
故选:C.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(每小题3分,共24分)11、(2,3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【详解】解:y=(x-2)2+3是抛物线的顶点式,
根据顶点式的坐标特点可知,顶点坐标为(2,3).
故答案为(2,3)【点睛】考查将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.12、65°【分析】根据切线长定理即可得出AB=AC,然后根据等边对等角和三角形的内角和定理即可求出结论.【详解】解:∵是的切线,∴AB=AC∴∠ABC=∠ACB=(180°-∠A)=65°故答案为:65°.【点睛】此题考查的是切线长定理和等腰三角形的性质,掌握切线长定理和等边对等角是解决此题的关键.13、y=(x+1)2﹣1【分析】先确定抛物线C1:y=x2﹣4x+1的顶点坐标为(2,﹣3),再利用点平移的坐标变换规律,把点(2,﹣3)平移后对应点的坐标为(﹣1,﹣1),然后根据顶点式写出平移后的抛物线解析式.【详解】解:抛物线C1:y=x2﹣4x+1=(x﹣2)2﹣3的顶点坐标为(2,﹣3),把点(2,﹣3)先向左平移3个单位,再向下平移2个单位后所得对应点的坐标为(-1,﹣1),所以平移后的抛物线的解析式为y=(x+1)2﹣1,故答案为y=(x+1)2﹣1.【点睛】此题主要考查二次函数的平移,解题的关键是熟知二次函数平移的特点.14、1【分析】根据抛物线与x轴的交点问题,得到图象C1与x轴交点坐标为:(1,1),(2,1),再利用旋转的性质得到图象C2与x轴交点坐标为:(2,1),(4,1),则抛物线C2:y=(x-2)(x-4)(2≤x≤4),于是可推出横坐标x为偶数时,纵坐标为1,横坐标是奇数时,纵坐标为1或-1,由此即可解决问题.【详解】解:∵一段抛物线C1:y=-x(x-2)(1≤x≤2),
∴图象C1与x轴交点坐标为:(1,1),(2,1),
∵将C1绕点A1旋转181°得C2,交x轴于点A2;,
∴抛物线C2:y=(x-2)(x-4)(2≤x≤4),
将C2绕点A2旋转181°得C3,交x轴于点A3;
…
∴P(2121,m)在抛物线C1111上,
∵2121是偶数,
∴m=1,故答案为1.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15、【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是故答案为:.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、1或2【分析】设BP=x,则CP=BC-BP=3-x,易证∠B=∠C=90°,根据相似三角形的对应顶点分类讨论:①若△PAB∽△PDC时,列出比例式即可求出BP;②若△PAB∽△DPC时,原理同上.【详解】解:设BP=x,则CP=BC-BP=3-x∵AB∥CD,∠B=90°,∴∠C=180°-∠B=90°①若△PAB∽△PDC时∴即解得:x=1即此时BP=1;②若△PAB∽△DPC时∴即解得:即此时BP=1或2;综上所述:BP=1或2.故答案为:1或2.【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的对应边成比例列方程是解决此题的关键.17、【分析】连接OB,先根据OA=OB计算出,再根据计算出,进而计算出,最后根据OB=OC得出即得.【详解】解:连接OB,如下图:∴∴,∵∴∴故答案为:【点睛】本题考查了圆的性质及等腰三角形的性质,解题关键是熟知同圆的半径相等,同弧所对的圆周角是圆心角的一半.18、【解析】由扇形面积公式得:S=故答案是:.三、解答题(共66分)19、(1);(2)或;(3)结论成立,理由见解析【分析】(1)设影子抛物线表达式是,先求出原抛物线的顶点坐标,代入,可求解;(2)设原抛物线表达式是,用待定系数法可求,,即可求解;(3)分别求出两个抛物线的顶点坐标,即可求解.【详解】解:(1)原抛物线表达式是原抛物线顶点是,设影子抛物线表达式是,将代入,解得,所以“影子抛物线”的表达式是;(2)设原抛物线表达式是,则原抛物线顶点是,将代入,得①,将代入,②,由①、②解得,.所以,原抛物线表达式是或;(3)结论成立.设影子抛物线表达式是.原抛物线于轴交点坐标为则两条原抛物线可表示为与抛物线(其中、、、是常数,且,由题意,可知两个抛物线的顶点分别是、将、分别代入,得消去得,,,,、关于轴对称.【点睛】本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,理解“影子抛物线”的定义并能运用是本题的关键.20、(1)品牌新能源汽车月均增长率为20%;(2)经销商1至3月份共盈利273万元.【分析】(1)设新能源汽车销售量的月均增长率为,根据3月份销售216辆列方程,再解方程即可得到答案;(2)利用1至3月份的总销量乘以每辆车的盈利,即可得到答案.【详解】解:(1)设新能源汽车销售量的月均增长率为,根据题意得150(1+)2=216(1+)2=1.44解得:,(不合题意、舍去)0.2=20%答:该品牌新能源汽车月均增长率为20%(2)2月份销售新能源汽车150×(1+20%)=180辆(150+180+216)×(6.8-6.3)=273答:该经销商1至3月份共盈利273万元.【点睛】本题考查的是一元二次方程的应用,掌握利用一元二次方程解决增长率问题是解题的关键.21、40个【解析】设九(2)班有x个同学,则每个同学交换出(x﹣1)件小礼物,根据全班交换小礼物共1560件,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】设九(2)班有x个同学,则每个同学交换出(x﹣1)件小礼物,根据题意得:x(x﹣1)=1560,解得:x1=40,x2=﹣39(不合题意,舍去).答:九(2)班有40个同学.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22、(1)见解析;(2)1.【分析】(1)连接OD,OE,BD,证△OBE≌△ODE(SSS),得∠ODE=∠ABC=90°;(2)证△DEC为等边三角形,得DC=DE=2.【详解】(1)证明:连接OD,OE,BD,
∵AB为圆O的直径,
∴∠ADB=∠BDC=90°,
在Rt△BDC中,E为斜边BC的中点,
∴DE=BE,
在△OBE和△ODE中,
,
∴△OBE≌△ODE(SSS),
∴∠ODE=∠ABC=90°,
则DE为圆O的切线;
(2)在Rt△ABC中,∠BAC=30°,
∴BC=AC,
∵BC=2DE=4,
∴AC=8,
又∵∠C=10°,DE=CE,
∴△DEC为等边三角形,即DC=DE=2,
则AD=AC-DC=1.【点睛】考核知识点:切线的判定和性质.23、(1)相等;(2)见解析;(3)【分析】(1)由旋转得:旋转角相等,可得结论;
(2)证明△AOB≌△EOF(SAS),得∠OAB=∠OEF,根据平角的定义可得结论;
(3)如解图,根据等腰三角形的性质得:∠OFB=∠OBF=30°,∠OAE=∠AEO=30°,根据30度角的直角三角形的性质分别求得OB、OG、BF,勾股定理求得BE的长,再根据三角形面积公式即可求得结论.【详解】(1)由旋转得:∠AOE=∠BOF=,
故答案为:相等;(2)∵,∴,在△AOB和△EOF中,∴△AOB≌△EOF(SAS),∴,∵OA=OE,∴,∴;(3)如图,过点O作,垂足为G,根据旋转的性质知:∠BOF=120°,∠AOB=∠EOF,OB=OF,△BOF中,∠OFB=∠OBF=30°,
∴∠ABO=60°,
△AOE中,∠AOE=120°,OA=OE,
∴∠OAE=∠AEO=30°,
∴∠AOB=90°,
在△AOB和△EOF中,∴△AOB≌△EOF(SAS),∴,在中,∠AOB=90°,,∠OAB=30°,∴,在中,∠OGB=90°,,∠OBG=30°,∴,,∴,在中,∠EBF=90°,,,∴,∴.【点睛】本题是四边形的综合题,题目考查了几何图形的旋转变换,四边形的面积,直角三角形30度角的性质等知识,解决此类问题的关键分析图形的旋转情况,在旋转过程中,旋转角相等,对应线段相等.24、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.【分析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.(3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可【详解】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.(2)△BDF∽△CED∽△DEF,证明如下:∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,又∵∠EDF=∠B,∴∠BFD=∠CDE.∵AB=AC,∴∠B=∠C.∴△BDF∽△CED.∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人住房贷款抵押合同范本
- 华师大版数学八年级下册《小结》听评课记录4
- Unit 2 My school(说课稿)-2023-2024人教新起点版英语三年级下册
- 初中7年级数学试卷
- 人教版八年级地理下册《干旱的宝地-塔里木盆地》听课评课记录2
- 普通自行车的车轮半径(范文5篇)
- 人教版地理七年级下册《第一节 位置和范围》听课评课记录4
- 无锡苏教版三年级数学下册《认识面积》听评课记录
- 部编道德与法治七年级上册第四单元第十课《绽放生命之花第2课时 活出生命的精彩》听课评课记录
- 2025年度护工服务满意度评价合同
- 2022年高考湖南卷生物试题(含答案解析)
- GB/T 20909-2007钢门窗
- GB/T 17854-1999埋弧焊用不锈钢焊丝和焊剂
- GB/T 15593-2020输血(液)器具用聚氯乙烯塑料
- 直线加速器专项施工方案
- 联苯二氯苄生产工艺及产排污分析
- 储能设备项目采购供应质量管理方案
- 2022年全国卷高考语文答题卡格式
- 美国房地产市场特征、框架与周期演变
- 复旦大学简介 (课堂PPT)
- CKD马达使用说明
评论
0/150
提交评论