2022-2023学年山东省寿光市现代中学数学八年级第一学期期末考试模拟试题含解析_第1页
2022-2023学年山东省寿光市现代中学数学八年级第一学期期末考试模拟试题含解析_第2页
2022-2023学年山东省寿光市现代中学数学八年级第一学期期末考试模拟试题含解析_第3页
2022-2023学年山东省寿光市现代中学数学八年级第一学期期末考试模拟试题含解析_第4页
2022-2023学年山东省寿光市现代中学数学八年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A和B分别代表的是()A.分式的基本性质,最简公分母=0B.分式的基本性质,最简公分母≠0C.等式的基本性质2,最简公分母=0D.等式的基本性质2,最简公分母≠02.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于B(a,﹣a),与y轴交于点A(0,b).其中a、b满足(a+2)2+=0,那么,下列说法:(1)B点坐标是(﹣2,2);(2)三角形ABO的面积是3;(3);(4)当P的坐标是(﹣2,5)时,那么,,正确的个数是()A.1个 B.2个 C.3个 D.4个3.如图,△ABC与△A'B'C'关于直线L对称,∠A=50°,∠C'=30°,则∠B的度数为()A.30° B.50° C.90° D.100°4.等腰三角形的一个角是80°,则它的底角是()A.50° B.80° C.50°或80° D.20°或80°5.下列各式运算正确的是()A. B. C. D.6.已知5,则分式的值为()A.1 B.5 C. D.7.下列各式是最简分式的是()A. B.C. D.8.如图,在Rt△ABC中,∠B=90°,D是BC延长线上一点,∠ACD=130°,则∠A等于()A.40° B.50° C.65° D.90°9.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD10.如果把分式中的、同时扩大为原来的2倍,那么得到的分式的值()A.不变 B.缩小到原来的C.扩大为原来的2倍 D.扩大为原来的4倍二、填空题(每小题3分,共24分)11.计算:6x2÷2x=.12.如图,在一个规格为(即个小正方形)的球台上,有两个小球.若击打小球,经过球台边的反弹后,恰好击中小球,那么小球击出时,应瞄准球台边上的点______________.13.中,,,交于,交于,点是的中点.以点为原点,所在的直线为轴构造平面直角坐标系,则点的横坐标为________.14.△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.15.观察一组数据,,,,,......,它们是按一定规律排列的,那么这一组数据的第个数是_________.16.分式值为0,则____________________.17.如图,一次函数的图象与轴的交点坐标为(2,0),则下列说法:①随的增大而减小;②>0;③关于的方程的解为.其中说法正确的有(把你认为说法正确的序号都填上).18.计算-(-3a2b3)2的结果是_______.三、解答题(共66分)19.(10分)先化简,再取一个你喜欢的的值带入并求值20.(6分)(1)因式分解:(2)解方程:(3)计算:21.(6分)阅读材料:“直角三角形如果有一个角等于,那么这个角所对的边等于斜边的一半”,即“在中,,则”.利用以上知识解决下列问题:如图,已知是的平分线上一点.(1)若与射线分别相交于点,且.①如图1,当时,求证:;②当时,求的值.(2)若与射线的反向延长线、射线分别相交于点,且,请你直接写出线段三者之间的等量关系.22.(8分)以水润城,打造四河一库生态水系工程,是巩义坚持不懈推进文明创建与百城提质深度融合的缩影,伊洛河畔正是此项目中的一段.如今,伊洛河畔需要铺设一条长为米的管道,决定由甲、乙两个工程队来完成.已知甲工程队比乙工程队每天能多铺设米,且甲工程队铺设米所用的天数与乙工程队铺设米所用的天数相同.(完成任务的工期为整数)(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项管道铺设任务的工期不超过天,那么为两工程队分配工程量的方案有几种?请你帮助设计出来(工程队分配工程量为整百数)23.(8分)(1)计算:2(m+1)2﹣(2m+1)(2m﹣1);(2)先化简,再求值.[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.24.(8分)甲、乙两人计划8:00一起从学校出发,乘坐班车去博物馆参观,乙乘坐班车准时出发,但甲临时有事没赶上班车,8:45甲沿相同的路线自行驾车前往,结果比乙早1小时到达.甲、乙两人离学校的距离y(千米)与甲出发时间x(小时)的函数关系如图所示.

(1)点A的实际意义是什么?(2)求甲、乙两人的速度;(3)求OC和BD的函数关系式;(4)求学校和博物馆之间的距离.25.(10分)某公司销售部有营销员15人,销售部为了制定关于某种商品的每位营销员的个人月销售定额,统计了这15人某月关于此商品的个人月销售量(单位:件)如下:个人月销售量1800510250210150120营销员人数113532(1)求这15位营销员该月关于此商品的个人月销售量的平均数,并直接写出这组数据的中位数和众数;(2)假设该销售部负责人把每位营销员关于此商品的个人月销售定额确定为320件,你认为对多数营销员是否合理?并在(1)的基础上说明理由.26.(10分)已知一次函数y=﹣x+4与x轴交于点A,与y轴交于点C,∠CAO=30°,B点在第一象限,四边形OABC为长方形,将B点沿直线AC对折,得到点D,连接点CD交x轴于点E.(1)M是直线AC上一个动点,N是y轴上一个动点,求出周长的最小值;(2)点P为y轴上一动点,作直线AP交直线CD于点Q,将直线AP绕着点A旋转,在旋转过程中,与直线CD交于Q.请问,在旋转过程中,是否存在点P使得为等腰三角形?如果存在,请求出∠OAP的度数;如果不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解析】根据解分式方程的步骤,可得答案.【详解】去分母得依据是等式基本性质2,检验时最简公分母等于零,原分式方程无解.故答案选:C.【点睛】本题考查了解分式方程,解题的关键是熟练的掌握解分式方程的方法.2、D【分析】(1)根据非负数的性质即可求得a的值,即可得到B(﹣2,2);(2)利用三角形面积公式求得即可判断;(3)求得△OBC和△AOB的面积即可判断;(4)S△BCP和S△AOB的值即可判断.【详解】解:(1)∵a、b满足(a+2)2+=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴点A的坐标为(0,3),点B的坐标为(﹣2,2),故(1)正确;(2)三角形ABO的面积=×OA×=×3×2=3,故(2)正确;(3)设直线l2的解析式为y=kx+c(k≠0),将A、B的坐标代入y=kx+c,得:,解得:,∴直线l2的解析式为y=x+3,令y=0,则x=﹣6,∴C(﹣6,0),∴S△OBC==6,∵S△ABO=3,∴S△OBC:S△AOB=2:1;故(3)正确;(4)∵P的坐标是(﹣2,5),B(﹣2,2),∴PB=5﹣2=3,∴S△BCP==6,S△AOB=×3×2=6,∴S△BCP=S△AOB.故(4)正确;故选:D.【点睛】本题考查了两条直线相交问题,三角形的面积,一次函数图象上点的坐标特征,求得交点坐标是解题的关键.3、D【分析】利用轴对称图形的性质得出对应角,进而得出答案.【详解】解:因为△ABC与△A'B'C'关于直线L对称,所以∠A=∠A′,∠B=∠B′,∠C=∠C′,所以∠B=180°−50°−30°=100°,故选:D.【点睛】此题主要考查了轴对称图形的性质,得出对应角是解题关键.4、C【分析】因为题中没有指明该角是顶角还是底角,则应该分两种情况进行分析.【详解】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;②底角是80°.所以底角是50°或80°.故选:C.【点睛】本题考查了等腰三角形底角的问题,掌握等腰三角形的性质是解题的关键.5、D【分析】计算出各个选项中式子的正确结果,然后对照即可得到哪个选项是正确的.【详解】解:∵,故选项A错误;∵,故选项B错误;∵,故选项C错误;∵,故选项D正确;故选D.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.6、A【分析】由5,得x﹣y=﹣5xy,进而代入求值,即可.【详解】∵5,∴5,即x﹣y=﹣5xy,∴原式1,故选:A.【点睛】本题主要考查分式的求值,掌握等式的基本性质以及分式的约分,是解题的关键.7、B【分析】依次化简各分式,判断即可.【详解】A、,选项错误;B、无法再化简,选项正确;C、,选项错误;D、,选项错误;故选B.【点睛】本题是对最简分式的考查,熟练掌握分式化简是解决本题的关键.8、A【详解】∠ACD=∠A+∠B,即130°=∠A+90°,解得∠A=40°.故选A.【点睛】本题考查三角形的一个外角等于与之不相邻的两个内角之和.9、D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.10、B【分析】根据分式的基本性质即可求出答案.【详解】解:;∴得到的分式的值缩小到原来的;故选:B.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.二、填空题(每小题3分,共24分)11、3x.【解析】试题解析:6x2÷2x=3x.考点:单项式除以单项式.12、P1【分析】认真读题,作出点A关于P1P1所在直线的对称点A′,连接A′B与P1P1的交点即为应瞄准的点.【详解】如图,应瞄准球台边上的点P1.故答案为:P1.【点睛】本题考查了生活中的轴对称现象问题;解决本题的关键是理解击球问题属于求最短路线问题.13、【分析】连接DE,过E作EH⊥OD于H,求得∠EDO=45°,即可得到Rt△DEH中,求得DH,进而得出OH,即可求解.【详解】如图所示,连接,过作于,于,于,是的中点,,,,,,,,中,,,点的横坐标是.【点睛】本题主要考查了直角三角形斜边上中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是作辅助线构造等腰直角三角形.14、84或24【解析】分两种情况考虑:①当△ABC为锐角三角形时,如图1所示,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD+DC=9+5=14,则S△ABC=BC⋅AD=84;②当△ABC为钝角三角形时,如图2所示,∵AD⊥BC,∴∠ADB=90°,在Rt△ABD中,AB=15,AD=12,根据勾股定理得:BD==9,在Rt△ADC中,AC=13,AD=12,根据勾股定理得:DC==5,∴BC=BD−DC=9−5=4,则S△ABC=BC⋅AD=24.综上,△ABC的面积为24或84.故答案为24或84.点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.15、【分析】根据题意可知,分子是从开始的连续奇数,分母是从开始的连续自然数的平方,进一步即可求得第个数为.【详解】∵这组数据中的每个数都是分数,分子是从开始的连续奇数,分母是从开始的连续自然数的平方.∴这组数据的第个数是(为正整数)故答案是:(为正整数)【点睛】对于找规律的题目,通常按照顺序给出一系列量,要求我们根据这些已知的量找出一般的规律,找出的规律通常包含着序列号,因此,把变量和序列号放在一起加以比较,就比较容易的发现其中的奥秘.16、-1【分析】根据分式的值为零的条件:分子=0且分母≠0,列出方程和不等式即可得出结论.【详解】解:∵分式的值为0∴解得:a=-1故答案为:-1.【点睛】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0是解决此题的关键.17、①②③【详解】考点:一次函数的性质;一次函数的图象;一次函数与一元一次方程.分析:根据一次函数的性质,结合一次函数的图形进行解答.解:①因为一次函数的图象经过二、四象限,所以y随x的增大而减小,故本项正确②因为一次函数的图象与y轴的交点在正半轴上,所以b>0,故本项正确③因为一次函数的图象与x轴的交点为(2,0),所以当y=0时,x=2,即关于x的方程kx+b=0的解为x=2,故本项正确故答案为①②③.18、-9a4b6【分析】根据积的乘方和幂的乘方法则即可解答.【详解】解:【点睛】本题考查积的乘方和幂的乘方运算,熟练掌握其法则是解题的关键.三、解答题(共66分)19、,x=1时值为1.【分析】先对分式进行化简,要是分式有意义,则需要使在整个运算过程中的分母不为0,取值时避开这些使分母为0的数即可.【详解】解:原式要使分式有意义,则0,1,-1则当时,代入得【点睛】本题主要考查的是分式的化简求值以及使分式有意义的条件,掌握这两个知识点并正确的运用是解题的关键.20、(1);(2)是原方程的解;(3)【分析】(1)提取公因式后用平方差公式分解即可;(2)根据去分母、去括号、移项、合并同类项、系数化为1求解,求解后检验即可;(3)根据单项式乘以多项式的法则及完全平方公式取括号后,合并同类项即可.【详解】(1)(2)方程两边同时乘以得:检验:当时,∴是原方程的解.(3)原式【点睛】本题考查的是因式分解、解分式方程、整式的混合运算,掌握因式分解的方法:提公因式法及公式法,解分式方程的一般步骤及整式的运算法则是关键.21、(1)①证明见解析;②;(2)OM-ON=【分析】(1)①根据题意证明CNO=90°及∠COM=∠CON=30°,可利用题目中信息得到OM=ON,再利用勾股定理即可解答;②证明△COM≌CON,得到∠CMO=∠CNO=90°,再利用①中结论即可;(2)根据题意作出辅助线,再证明△MCE≌△NCF(ASA),得到NF=ME,由30°直角三角形的性质得到OE=OF=,进而得到OM-ON=即可.【详解】(1)①证明:∵CM⊥OA,∴∠CMO=90°,∵,∠MCN=120°,∴∠CNO=360°-∠CMO-∠AOB-∠MCN=90°,∵C是∠AOB平分线上的一点,∴CM=CN,∠COM=∠CON=30°,∵OC=2,∴CM=CN=1,由勾股定理可得:OM=ON=,∴②当时,∵OC是∠AOB的平分线,∴∠COM=∠CON=30°,在△COM与CON中∴△COM≌CON(SAS)∴∠CMO=∠CNO∵∠AOB=60°,∠MCN=120°,∴∠CMO+∠CNO=360°-60°-120°=180°∴∠CMO=∠CNO=90°,又①可知(2)如图所示,作CE⊥OA于点E,作CF⊥OB于点F,∵∠AOB=60°,∴∠ECF=120°,又∵∠MCN=120°,∴∠MCE+∠ECN=∠NCF+∠ECN∴∠MCE=∠NCF∵OC是∠AOB的平分线,∴∠COM=∠CON=30°,CE=CF∴在△MCE与△NCF中,∴△MCE≌△NCF(ASA)∴NF=ME又∵△OCE≌△OCF,∠COM=∠CON=30°,∴CE=CF=∴OE=OF=∴OM-OE=ON+OF,∴OM-ON=OE+OF=,故答案为:OM-ON=【点睛】本题考查了含30°直角三角形的性质、勾股定理的计算以及全等三角形的性质与判定,解题的关键是熟知含30°直角三角形的性质并灵活构造全等三角形.22、(1)甲、乙工程队每天分别能铺设米和米;(2)分配方案有种:方案一:分配给甲工程队米,分配给乙工程队米;方案二:分配给甲工程队米,分配给乙工程队米;方案三:分配给甲工程队米,分配给乙工程队米.【分析】(1)设甲工程队每天能铺设x米.根据甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同,列方程求解;(2)设分配给甲工程队y米,则分配给乙工程队(1000−y)米.根据完成该项工程的工期不超过10天,列不等式组进行分析.【详解】(1)设甲工程队每天能铺设米,则乙工程队每天能铺设米,根据题意得:,即,∴,解得:,经检验,是所列分式方程的解,且与题意相符,∴(米),答:甲、乙工程队每天分别能铺设米和米;(2)设分配给甲工程队米,则分配给乙工程队米.由题意,得解得:.∵分配的工程量为整百数,∴y只能取或或,所以分配方案有种:方案一:分配给甲工程队米,分配给乙工程队米;方案二:分配给甲工程队米,分配给乙工程队米;方案三:分配给甲工程队米,分配给乙工程队米.【点睛】此题主要考查了分式方程的应用,以及一元一次不等式组的应用,在工程问题中,工作量=工作效率×工作时间.在列分式方程解应用题的时候,也要注意进行检验.23、(1)﹣2m2+4m+3;(2)﹣x+y,.【分析】(1)直接利用乘法公式化简进而合并同类项即可;(2)直接利用多项式的乘法运算进而结合整式的混合运算法则计算得出答案.【详解】(1)原式=2(m2+2m+1)﹣(4m2﹣1)=2m2+4m+2﹣4m2+1=﹣2m2+4m+3;(2)原式=(x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=﹣x+y,当x=﹣2,y=时,原式=2+=.【点睛】此题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键.24、(1)点A的意义是甲用0.75小时追上了乙,此时到学校的距离为60千米;(2)甲、乙的速度分别是80千米/小时,40千米/小时;(3)OC的关系式为,BD的函数关系式为;(4)学校和博物馆之间的距离是140千米.【分析】(1)观察函数图象,利用x轴和y轴的意义即可得出结论;

(2)甲行走了60km用了0.75小时,乙行走了60km用了小时,根据路程与时间的关系即可求解;

(3)用待定系数法,根据B点和A点坐标即可求出BD的解析式,根据A点坐标即可求出直线OC的解析式;

(4)设甲用时x小时,则乙为(x+1.75)小时,根据路程相等列方程解答即可.【详解】(1)点A的意义是甲用0.75小时追上了乙,此时到学校的距离为60千米;(2)甲的速度为:(千米/时)乙的速度为:(千米/时)答:甲、乙的速度分别是:80千米/小时,40千米/小时;(3)根据题意得:A点坐标,当乙运动了45分钟后,距离学校:(千米)∴B点坐标设直线OC的关系式:,代入A得到,解得故直线OC的解析式为设BD的关系式为:把A和B代入上式得:,解得:∴直线BD的解析式为;(4)设甲的时间x小时,则乙所用的时间为:(小时),所以:80x=40(x+1.75),解得:x=∴80×=140答:学校和博物馆之间的距离是140千米.【点睛】本题考查的知识点是一次函数的实际应用,从一次函数图象中找出相关数据是解此题的关键.25、(1)平均数320,中位数210,众数210;(2)不合理,理由见解析.【分析】(1)根据平均数的定义以及计算公式、中位数的定义、众数的定义求解即可.(2)根据平均数、中位数、众数的定义进行分析即可.【详解】(1)平均数是:(1800+510+25×3+210×5+150×3+120×2)=320(件),表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件),210出现了5次最多,所以众数是210;(2)不合理.因为15人中有13人的销售额不到320件,320件虽是所给一组数据的平均数,它却不能很好地反映

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论