版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.已知图中的两个三角形全等,则的度数是()A.72° B.60° C.58° D.50°2.已知直线y=kx+b的图象如图所示,则不等式kx+b>0的解集是()A.x>2 B.x>3 C.x<2 D.x<33.如图、相交于点,,若用“”证还需()A. B. C. D.4.如图,已知AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()对.A.4 B.3 C.2 D.15.若是完全平方式,则的值为()A. B.10 C.5 D.10或6.下列各数中,是无理数的是().A. B. C. D.07.以直角三角形的三边为边做正方形,三个正方形的面积如图,正方形A的面积为()A.6 B.36 C.64 D.88.下列各式中为最简二次根式的是()A. B. C. D.9.如图,直角坐标系中四边形的面积是()A.4 B.5.5 C.4.5 D.510.如图,在四边形中,,,,,则四边形的面积是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3,则线段BD的长为___.12.点M(3,﹣1)到x轴距离是_____.13.若关于x的方程=0有增根,则m的值是______.14.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、E的面积分别为2,5,1,1.则正方形D的面积是______.15.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,分别以三角形的三条边为边作正方形,则三个正方形的面S1+S2+S3的值为_______.16.分式方程的解为_________.17.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是________组.18.等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角的度数为_________.三、解答题(共66分)19.(10分)如图1,已知直线AO与直线AC的表达式分别为:和.(1)直接写出点A的坐标;(2)若点M在直线AC上,点N在直线OA上,且MN//y轴,MN=OA,求点N的坐标;(3)如图2,若点B在x轴正半轴上,当△BOC的面积等于△AOC的面积一半时,求∠ACO+∠BCO的大小.20.(6分)(1)如图1,在△ABC中,AB=AC,∠BAC=45°.△ABC的高AD、BE相交于点M.求证:AM=2CD;(2)如图2,在Rt△ABC中,∠C=90°,AC=BC,AD是∠CAB的平分线,过点B作BE⊥AD,交AD的延长线于点E.若AD=3,则BE=.21.(6分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,其中∠DAB=90°,求证:a1+b1=c1.22.(8分)第7届世界军人运动会于2019年10月18日在武汉开幕,为备战本届军运会,某运动员进行了多次打靶训练,现随机抽取该运动员部分打靶成绩进行整理分析,共分成四组:(优秀)、(良好)、(合格)、(不合格),绘制了如下不完整的统计图:根据以上信息,解答下列问题:(1)直接写出本次统计成绩的总次数和图中的值.(2)求扇形统计图中(合格)所对应圆心角的度数.(3)请补全条形统计图.23.(8分)我校要进行理化实验操作考试,需用八年级两个班级的学生整理实验器材.已知一班单独整理需要分钟完成.如果一班与二班共同整理分钟后,一班另有任务需要离开,剩余工作由二班单独整理分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?24.(8分)先化简,再求值:(1﹣)÷,其中a=(3﹣π)0+()﹣1.25.(10分)两个工程队共同参与一项筑路工程,若先由甲、乙两队合作天,剩下的工程再由乙队单独做天可以完成,共需施工费万元;若由甲、乙合作完成此项工程共需天,共需施工费万元.(1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过万元,则乙队最少施工多少天?26.(10分)分解因式:(1)ax2﹣9a;(2)4ab2﹣4a2b﹣b1.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据全等三角形的性质中对应角相等,可得此组对应角为线段a和c的夹角,由此可知=50°即可.【详解】∵两个三角形全等,∴∠α=50°.故选D.【点睛】此题考查全等三角形的性质,学生不仅需要掌握全等三角形的性质,而且要准确识别图形,确定出对应角是解题的关键.2、C【分析】根据函数图象可得当y>0时,图象在x轴上方,然后再确定x的范围.【详解】直线y=kx+b中,当y>0时,图象在x轴上方,则不等式kx+b>0的解集为:x<2,故选:C.【点睛】此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想,利用图象可直接确定答案.3、C【分析】利用对顶角相等,则要根据“ASA”证△ABO≌△DCO需添加对应角∠A与∠D相等.【详解】∵OA=OD,
而∠AOB=∠DOC,
∴当∠A=∠D时,可利用“ASA”判断△ABO≌△DCO.
故选:C.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.4、B【分析】分别利用SAS,SAS,SSS来判定△ABE≌△DCF,△BEF≌△CFE,△ABF≌△CDE.【详解】解:∵AB∥CD,∴∠A=∠D,∵AB=CD,AE=FD,∴△ABE≌△DCF(SAS),∴BE=CF,∠BEA=∠CFD,∴∠BEF=∠CFE,∵EF=FE,∴△BEF≌△CFE(SAS),∴BF=CE,∵AE=DF,∴AE+EF=DF+EF,即AF=DE,∴△ABF≌△CDE(SSS),∴全等三角形共有三对.故选B.5、D【分析】将写成,再利用完全平方式的特征对四个选项逐一进行判断即可得到的值.【详解】=∵是一个完全平方式,∴∴故选:D【点睛】本题考查的知识点是完全平方公式的概念,理解并掌握一次项系数具有的两种情况是解题的关键.6、C【分析】根据无理数的定义解答.【详解】=2,是有理数;-1,0是有理数,π是无理数,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7、A【分析】根据图形知道所求的A的面积即为正方形中间的直角三角形的A所在直角边的平方,然后根据勾股定理即可求解.【详解】∵两个正方形的面积分别为8和14,且它们分别是直角三角形的一直角边和斜边的平方,∴正方形A的面积=14-8=1.故选:A.【点睛】本题主要考查勾股树问题:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.8、C【分析】根据最简二次根式的定义解答即可.【详解】A、,故不是最简二次根式;B、,故不是最简二次根式;C,、是最简二次根式,符合题意;D、,故不是最简二次根式;故选C.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、C【解析】过A点作x轴的垂线,垂足为E,将不规则四边形分割为两个直角三角形和一个直角梯形求其面积即可.【详解】解:过A点作x轴的垂线,垂足为E,直角坐标系中四边形的面积为:1×1÷2+1×2÷2+(1+2)×2÷2=0.1+1+3=4.1.故选:C.【点睛】本题主要考查了点的坐标的意义以及与图形相结合的具体运用.割补法是求面积问题的常用方法.10、A【分析】如下图,连接AC,在Rt△ABC中先求得AC的长,从而可判断△ACD是直角三角形,从而求得△ABC和△ACD的面积,进而得出四边形的面积.【详解】如下图,连接AC∵AB=BC=1,AB⊥BC∴在Rt△ABC中,AC=,∵AD=,DC=2又∵∴三角形ADC是直角三角形∴∴四边形ABCD的面积=+2=故选:A.【点睛】本题考查勾股定理的逆定理,遇到此类题型我们需要敏感一些,首先就猜测△ADC是直角三角形,然后用勾股定理逆定理验证即可.二、填空题(每小题3分,共24分)11、9【分析】利用三角形的内角和求出∠A,余角的定义求出∠ACD,然后利用含30度角的直角三角形性质求出AC=2AD,AB=2AC即可..【详解】解:∵CD⊥AB,∠ACB=90°,∴∠ADC=∠ACB=90°又∵在三角形ABC中,∠B=30°∴∠A=90°-∠B=60°,AB=2AC又∵∠ADC=90°∴∠ACD=90°-∠A=30°∴AD=AC,即AC=6∴AB=2AC=12∴BD=AB-AD=12-3=9【点睛】本题主要考查了含30度角的直角三角形性质以及三角形内角和定理,解题的关键在于灵活应用含30度角的直角三角形性质.12、1【分析】点到x轴的距离是该点纵坐标的绝对值,根据点坐标即可得到答案.【详解】解:M(3,﹣1)到x轴距离是1.故答案为:1.【点睛】此题考查点到坐标轴的距离,正确理解距离与点坐标的关系是解题的关键.13、2【解析】去分母得,m-1-x=0.∵方程有增根,∴x=1,∴m-1-1=0,∴m=2.14、2【分析】设中间两个正方形和正方形D的面积分别为x,y,z,然后有勾股定理解答即可.【详解】解:设中间两个正方形和正方形D的面积分别为x,y,z,则由勾股定理得:x=2+5=7;y=1+z;7+y=7+1+z=1;即正方形D的面积为:z=2.故答案为:2.【点睛】本题考查了勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15、200【分析】根据正方形的面积公式和勾股定理,即可得到阴影部分的面积S1+S2+S3的值.【详解】解:∵∠ACB=90°,AC=6,BC=8,∴AB2=AC2+BC2=62+82=100∴S1+S2+S3=AC2+BC2+AB2=62+82+100=200故答案为:200【点睛】本题考查勾股定理,解题关键是将勾股定理和正方形的面积公式进行结合应用.16、【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【详解】去分母得:,
解得:,
经检验是分式方程的解.故答案为:.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17、甲【解析】根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【详解】=8,=8,[(8-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2]=0.4,[(9-8)2+(8-8)2+(7-8)2+(9-8)2+(7-8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点睛】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.18、50°或130°【分析】分类讨论当三角形是等腰锐角三角形和等腰钝角三角形两种情况,画出图形并结合三角形的内角和定理及三角形外角的性质,即可求出顶角的大小.【详解】(1)当三角形是锐角三角形时,如下图.根据题意可知,∵三角形内角和是,∴在中,(2)当三角形是锐角三角形时,如下图.根据题意可知,同理,在中,∵是的外角,∴故答案为或【点睛】本题考察了等腰三角形性质和三角形外角的性质以及三角形内角和定理的运用,分类讨论该等腰三角形是等腰锐角三角形或等腰钝角三角形是本题的关键.三、解答题(共66分)19、(1)A点的坐标为(4,2);(2)N的坐标为(),();(3)∠ACO+∠BCO=45°【分析】(1)利用直线AO与直线AC交点为A即可求解;(2)先求出MN的长,再设设M的坐标为(a,2a-6),则则N的坐标为(a,),表示出MN的长度解方程即可;(3)作∠GCO=∠BCO,把∠ACO+∠BCO转化成∠ACG。题目条件没出现具体角度,但结论又要求角度的,这个角度一定是一个特殊角,即∠ACG的度数一定是个特殊角;即∠ACG处于一个特殊的三角形中,于是有了作DE⊥GC的辅助线思路,运用勾股定理知识即可解答.【详解】(1)联立和得:解得A点的坐标为(4,2);(2)∵A点的坐标为(4,2)∴OA=,∴MN=OA=2,∵点M在直线AC上,点N在直线OA上,且MN//y轴,∴设M的坐标为(a,2a-6),则N的坐标为(a,),则存在以下两种情况:①当M在N点下方时,如图3,
则MN=-(2a-6)=2,解得a=,∴N点的坐标为();②当M在N点上方时,如图4,
则MN=(2a-6)-=2,解得a=,∴N点的坐标为();综上所述,N的坐标为(),()(3)∵△BOC与△AOC有相同的底边OC,∴当△BOC的面积等于△AOC的面积一半时,△BOC的高OB的长度是△AOC的高的一半,∴OB=2,设直线AC与x轴的交点为点D,则D(3,0),作点B关于y轴的对称点G,则OG=0B=2,GD=5,∠BCO=∠GCO,则∠ACO+∠BCO=∠ACO+∠GCO=∠ACG,连接GC,作DE⊥GC于点E,如图5
由勾股定理可得:GC=,DC=,在△CGD中,由等面积法可得:OC•DG=DE•GC,可得DE=,在Rt△DEC中,由勾股定理可得EC=,∴ED=EC,∴∠ECD=45°,即∠ACO+∠BCO=45°.【点睛】本题考查一次函数的综合运用,坐标结合勾股定理计算边长是解题的关键.20、(1)详见解析;(2)1.1.【分析】(1)根据全等三角形的判定和性质定理以及等腰三角形的性质定理,即可得到结论;(2)延长BE、AC交于F点,首先利用三角形内角和定理计算出∠F=∠ABF,进而得到AF=AB,再根据等腰三角形的性质可得BE=BF,然后证明△ADC≌△BFC,可得BF=AD,进而得到BE=AD,即可求解.【详解】(1)在△ABC中,∵∠BAC=41°,BE⊥AC,∴AE=BE,∵AD⊥BC,∴∠EAM=90°-∠C=∠EBC,在△AEM和△BEC中,∵,∴△AEM≌△BEC(ASA),∴AM=BC,∵AB=AC,AD⊥BC,∴BD=CD,∴BC=2CD,∴AM=2CD;(2)延长BE、AC交于F点,∵BE⊥EA,∴∠AEF=∠AEB=90°.∵AD平分∠BAC,∴∠FAE=∠BAE,∴∠F=∠ABE,∴AF=AB,∵BE⊥EA,∴BE=EF=BF,∵△ABC中,AC=BC,∠C=90°,∴∠CAB=41°,∴∠AFE=(180°﹣41°)÷2=67.1°,∠FAE=41°÷2=22.1°,∴∠CDA=67.1°,∵在△ADC和△BFC中,∵,∴△ADC≌△BFC(AAS),∴BF=AD,∴BE=AD=1.1,故答案为:1.1.【点睛】本题主要考查三角形全等的判定和性质定理以及等腰三角形的性质定理,添加辅助线,构造全等三角形,是解题的关键.21、证明见解析.【分析】根据即可得证.【详解】如图,过点D作,交BC延长线于点F,连接BD,则,由全等三角形的性质得:,,,,即,整理得:.【点睛】本题考查了勾股定理的证明,掌握“面积法”是解题关键.22、(1)本次统计成绩的总次数是20次,;(2)126°;(3)见解析.【分析】(1)用D等级的次数除以D等级所占百分比即得本次统计成绩的总次数;用总次数减去其它三个等级的次数可得B等级的次数,然后用B等级的次数除以总次数即得m的值;(2)用C等级的次数除以总次数再乘以360°即得结果;(3)由(1)题知B等级的次数即可补全条形统计图.【详解】解:(1)本次成绩的总次数=3÷15%=20次,B等级的次数是:,8÷20=40%,所以m=40;(2),所以扇形统计图中(合格)所对应圆心角的度数是126°;(3)补全条形统计图如图所示.【点睛】本题考查了条形统计图和扇形统计图的相关知识,属于基本题型,难度不大,熟练掌握条形统计图和扇形统计图的基本知识是解题关键.23、1分钟【分析】设二班单独整理这批实验器材需要x分钟,则根据甲的工作量+乙的工作量=1,列方程,求出x的值,再进行检验即可;【详解】解:设二班单独整理这批实验器材需要x分钟,由题意得,解得x=1.经检验,x=1是原分式方程的根.答:二班单独整理这批实验器材需要1分钟;【点睛】本题考查的是分式方程的应用,根据题意列出关于x的方程是解答此题的关键.24、【分析】原式括号中两项通分并利用同分母分式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度绿色环保产品广告合作与市场拓展合同3篇
- 《电子商务运作体系》课件
- 《环境民事责任》课件
- 2024年物业服务协议新模式3篇
- 2024年版消防器材销售协议3篇
- 2024年度幼儿园卫生专员聘请协议一
- 2024年度物业管理服务合同(含社区环境保护)3篇
- 2025加工订货合同格式
- 2025私人购房合同
- 《市场经济的优缺点》课件
- pc(装配式)结构施工监理实施细则
- 医院内审制度
- 押运人员安全培训课件
- 给小学生科普人工智能
- 2024年南京信息职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 2024年汽配行业分析报告
- 【世界睡眠日】3.21主题班会(3月21日)良好睡眠健康作息-课件
- 2024年房地产经纪协理考试题库附参考答案(综合题)
- c型钢加工工艺
- 中药在护理中的应用
- 业余无线电爱好者培训-基础篇
评论
0/150
提交评论