版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设,,,则,,的大小关系是()A. B.C. D.2.已知函数为定义在上的偶函数,在上单调递减,并且,则实数的取值范围是()A. B.C. D.3.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}4.下列函数中在定义域上为减函数的是()A. B.C. D.5.已知函数,若函数有两个不同的零点,则实数的取值范围是()A. B.C. D.6.关于函数,下列说法正确的是()A.最小值为0 B.函数为奇函数C.函数是周期为周期函数 D.函数在区间上单调递减7.函数在区间上的最大值是A.1 B.C. D.1+8.已知集合A={x|x<2},B={x≥1},则A∪B=()A. B.C. D.R9.函数的部分图象是()A. B.C. D.10.某几何体的三视图如图所示,则该几何体的表面积是A. B.C. D.11.已知函数,,则函数的值域为()A. B.C. D.12.函数的零点所在的区间为A B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.两条平行直线与的距离是__________14.函数的定义域是______15.直线l与平面α所成角为60°,l∩α=A,则m与l所成角的取值范围是_______.16.已知函数,则函数的所有零点之和为________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点(Ⅰ)求证:面;(Ⅱ)求点到面的距离18.已知函数(1)求证:用单调性定义证明函数是上的严格减函数;(2)已知“函数的图像关于点对称”的充要条件是“对于定义域内任何恒成立”.试用此结论判断函数的图像是否存在对称中心,若存在,求出该对称中心的坐标;若不存在,说明理由;(3)若对任意,都存在及实数,使得,求实数的最大值.19.已知函数()是偶函数.(1)求的值;(2)设,判断并证明函数在上的单调性;(3)令若对恒成立,求实数的取值范围.20.已知函数最小正周期为.(1)求的值:(2)将函数的图象先向左平移个单位,然后向上平移1个单位,得到函数,若在上至少含有4个零点,求b的最小值.21.已知函数的图象与的图象关于轴对称,且的图象过点.(1)若成立,求的取值范围;(2)若对于任意,不等式恒成立,求实数的取值范围.22.已知(1)求函数的单调递增区间;(2)当时,函数的值域为,求实数的范围
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】根据指数函数与对数函数的图像与性质,结合中间量法,即可比较大小.【详解】由指数函数与对数函数的图像与性质可知综上可知,大小关系为故选:A【点睛】本题考查了指数函数与对数函数的图像与性质的应用,中间值法是比较大小常用方法,属于基础题.2、D【解析】利用函数的奇偶性得到,再解不等式组即得解.【详解】解:由题得.因为在上单调递减,并且,所以,所以或.故选:D3、A【解析】根据并集定义求解即可.【详解】∵A={1,2,3},B={2,3,4},根据并集的定义可知:A∪B={1,2,3,4},选项A正确,选项BCD错误.故选:A.4、C【解析】根据基本初等函数的单调性逐一判断各个选项即可得出答案.【详解】对于A,由函数,定义域为,且在上递增,故A不符题意;对于B,由函数,定义域为,且在上递增,故B不符题意;对于C,由函数,定义域为,且在上递减,故C符合题意;对于D,由函数,定义域为,且在上递增,故D不符题意.故选:C5、A【解析】将函数零点个数问题转化为图象交点个数问题,再数形结合得解.【详解】函数有两个不同的零点,即方程有两个不同的根,从而函数的图象和函数的图象有两个不同的交点,由可知,当时,函数是周期为1的函数,如图,在同一直角坐标系中作出函数的图象和函数的图象,数形结合可得,当即时,两函数图象有两个不同的交点,故函数有两个不同的零点.故选:A.6、D【解析】根据三角函数的性质,得到的最小值为,可判定A不正确;根据奇偶性的定义和三角函数的奇偶性,可判定C不正确;举例可判定C不正确;根据三角函数的单调性,可判定D正确.【详解】由题意,函数,当时,可得,所以,当时,可得,所以,所以函数的最小值为,所以A不正确;又由,所以函数为偶函数,所以B不正确;因为,,所以,所以不是的周期,所以C不正确;当时,,,当时,,即函数在区间上单调递减,又因为,所以函数在区间上单调递减,所以D正确.故选:D.7、C【解析】由,故选C.8、D【解析】利用并集定义直接求解即可【详解】∵集合A={x|x<2},B={x≥1},∴A∪B=R.故选D【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题9、C【解析】首先判断函数的奇偶性,即可排除AD,又,即可排除B.【详解】因为,定义域为R,关于原点对称,又,故函数为奇函数,图象关于原点对称,故排除AD;又,故排除B.故选:C.10、A【解析】由三视图可知几何体是一个底面为梯形的棱柱,再求几何体的表面积得解.【详解】由三视图可知几何体是一个底面为直角梯形的棱柱,梯形的上底为1,下底为2,高为2,棱柱的高为2.由题可计算得梯形的另外一个腰长为.所以该几何体的表面积=.故答案为A【点睛】本题主要考查三视图找原图,考查几何体的表面积的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理能力.11、B【解析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.【详解】依题意,函数,,令,则在上单调递增,即,于是有,当时,,此时,,当时,,此时,,所以函数的值域为.故选:B12、B【解析】根据零点的存在性定理,依次判断四个选项的区间中是否存在零点【详解】,,,由零点的存在性定理,函数在区间内有零点,选择B【点睛】用零点的存在性定理只能判断函数有零点,若要判断有几个零点需结合函数的单调性判断二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】直线与平行,,得,直线,化为,两平行线距离为,故答案为.14、【解析】,即定义域为点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)15、【解析】根据直线l与平面α所成角是直线l与平面α内所有直线成的角中最小的一个,直线l与平面α所成角的范围,即可求出结果【详解】由于直线l与平面α所成角为60°,直线l与平面α所成角是直线l与平面α内所有直线成的角中最小的一个,而异面直线所成角的范围是(0,],直线m在平面α内,且与直线l异面,故m与l所成角的取值范围是.故答案为【点睛】本题考查直线和平面所成的角的定义和范围,判断直线与平面所成角是直线与平面α内所有直线成的角中最小的一个,是解题的关键16、0【解析】令,得到,在同一坐标系中作出函数的图象,利用数形结合法求解.【详解】因为函数,所以的对称中心是,令,得,在同一坐标系中作出函数的图象,如图所示:由图象知:两个函数图象有8个交点,即函数有8个零点由对称性可知:零点之和为0,故答案为:0三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(Ⅰ)证明见解析;(Ⅱ)【解析】(1)取中点,连结,,∵,分别为,的中点,∴可证得,,∴四边形是平行四边形,∴,又∵平面,平面,∴面(2)∵,∴18、(1)见解析;(2)存在,为;(3)2.【解析】(1)先设,然后利用作差法比较与的大小即可判断;假设函数的图像存在对称中心,(2)结合函数的对称性及恒成立问题可建立关于,的方程,进而可求,;(3)由已知代入整理可得,的关系,然后结合恒成立可求的范围,进而可求【小问1详解】设,则,∴,∴函数是上的严格减函数;【小问2详解】假设函数的图像存在对称中心,则恒成立,整理得恒成立,∴,解得,,故函数的对称中心为;【小问3详解】∵对任意,,都存在,及实数,使得,∴,即,∴,∴,∵,,∴,,∵,,∴,,,∴,即,∴,∴,即的最大值为219、(1)(2)单调递增函数.见解析(3)【解析】(1)由题意得,推出得,从而有,解出即可;(2)先求出函数的解析式,再根据单调性的性质即可得判断函数的单调性,再利用作差法证明即可;(3),令,换元法得在上恒成立,利用分离变量法求出函数在上的最值,从而可求出的取值范围【详解】解:(1)由是偶函数得,可得,∴,即,得,解得:;(2)由(1)可知,,,和在上单调递增,为在上的单调递增函数,证明:任取,那么,,,,,则,,,即那么,为在上的单调递增函数;(3)由(2)可知,那么,令,则,,,转化为在上恒成立,即在上恒成立,而函数和在上单调递增,则函数在上单调递增,∴,∴,故:实数的取值范围为【点睛】本题主要考查对数型函数的奇偶性与单调性的综合,考查恒成立问题,属于中档题20、(1)1(2)【解析】(1)利用平方关系、二倍角余弦公式、辅助角公式化简函数解析式,然后根据周期公式即可求解;(2)利用三角函数的图象变换求出的解析式,然后借助三角函数的图象即可求解.【小问1详解】解:,因为函数的最小正周期为,即,所以;【小问2详解】解:由(1)知,由题意,函数,令,即,因为在上至少含有4个零点,所以,即,所以的最小值为.21、(1);(2).【解析】利用已知条件得到的值,进而得到的解析式,再利用函数的图象关于轴对称,可得的解析式;(1)先利用对数函数的单调性,列出不等式组求解即可;(2)对于任意恒成立等价于,令,,利用二次函数求解即可.【详解】,,,;由已知得,即.(1)在上单调递减,,解得,的取值范围为.(2),对于任意恒成立等价于,,,令,,则,,当,即,即时,.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度门店合伙人激励机制服务合同4篇
- 2025年度二零二五农行个人二手房交易贷款合同2篇
- 2025年度绿色建筑节能改造工程合同(二零二五版)4篇
- 二零二五年度商业门面租赁合同范本-@-1
- 2025年度绿色生态餐厅档口租赁合同样本4篇
- 2025年度城市轨道交通钢管材料供应与承包合同协议书范本
- 2025版南海区创新创业人才居住就业支持合同4篇
- 2025版门面租赁合同消防安全及责任承担4篇
- 二零二五年度外卖送餐服务合同书(含增值服务)
- 二零二五年度年薪制工资与员工晋升合同模板
- 卫生服务个人基本信息表
- 医学脂质的构成功能及分析专题课件
- 高技能人才培养的策略创新与实践路径
- 广东省湛江市廉江市2023-2024学年八年级上学期期末考试数学试卷(含答案)
- 2024年湖北省知名中小学教联体联盟中考语文一模试卷
- 安徽省芜湖市2023-2024学年高一上学期期末考试 生物 含解析
- 交叉口同向可变车道动态控制与信号配时优化研究
- 燃气行业有限空间作业安全管理制度
- 数列练习题(含答案)基础知识点
- 通用电子嘉宾礼薄
- 充电站监理规划
评论
0/150
提交评论