广东省湛江市廉江市2023-2024学年八年级上学期期末考试数学试卷(含答案)_第1页
广东省湛江市廉江市2023-2024学年八年级上学期期末考试数学试卷(含答案)_第2页
广东省湛江市廉江市2023-2024学年八年级上学期期末考试数学试卷(含答案)_第3页
广东省湛江市廉江市2023-2024学年八年级上学期期末考试数学试卷(含答案)_第4页
广东省湛江市廉江市2023-2024学年八年级上学期期末考试数学试卷(含答案)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

廉江市2023—2024学年度第一学期期末教学质量抽测八年级数学试卷分值:120分时间:120分钟一、选择题(本大题10小题,每小题3分,共30分)1.下列常见的微信表情包中,属于轴对称图形的是(

)A. B. C. D.2.某新型纤维的直径约为0.000028米,将该新型纤维的半径用科学记数法表示是(

)A.米 B.米 C.米 D.米3.分式有意义,则x的取值范围是(

)A. B. C. D.4.下列长度的三条线段,能组成三角形的是(

)A.4,6,10 B.3,9,5 C.8,6,1 D.5,7,95.安装空调一般会采用如图的方法固定,其根据的几何原理是(

)A.三角形的稳定性 B.两点之间线段最短 C.两点确定一条直线 D.垂线段最短6.下列运算正确的是()A. B. C. D.7.如图,是的外角,平分,若,,则等于(

)A.40° B.50° C.45° D.55°8.下列等式从左到右的变形中,属于因式分解的是()A. B.C. D.9.如图,点E在的平分线上,,垂足为C,点F在上,若,,则(

)A.2 B.4 C.6 D.810.如图,△ABC中,∠ABC、∠EAC的角平分线BP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF,则下列结论中正确的个数()①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB;④S△PAC=S△MAP+S△NCP.A.1个 B.2个 C.3个 D.4个二、填空题(本大题6小题,每小题3分,共18分)11.因式分解:.12.一个多边形的内角和是,则这个多边形的边数为.13.已知点和点关于y轴对称,则.14.若分式的值为零,则x的值是.15.已知等腰三角形的两边长分别为4和8,则它的周长是.16.如图,在△ABC中,AB=3cm,AC=5cm,AB⊥AC,EF垂直平分BC,点P为直线EF上一动点则△ABP周长的最小值是.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程:.18.先化简,再求值:,其中.19.知:如图,平分,.求证:.四、解答题(二)(本大题4小题,每小题8分,共32分)20.在平面直角坐标系中的位置如图所示.

(1)作出关于x轴对称的;写出,,的坐标.(2)作出关于y轴对称的;求出的面积.21.(1)已知,,求的值.(2)已知,,,求的值.22.如图,点在线段上,.

求证:(1);(2)若,求的度数.23.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运材料,A型机器人搬运所用时间与B型机器人搬运所用时间相等.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于,则至少购进A型号机器人多少台?五、解答题(三)(本大题2小题,24题10分,25题12分,共22分)24.完全平方公式:,是多项式乘法中的重要公式之一,它经过适当变形可以解决很多数学问题.例如:若,,求的值.解:.根据以上信息回答下列问题:(1)若,,求的值.(2)若,,求的值.(3)如图,点E、F分别是正方形的边与上的点,以为边在正方形内部作面积为8的长方形,再分别以为边作正方形和正方形,若图中阴影部分的面积为20,求长方形的周长.25.如图1,在中,,点M从点B出发沿射线方向,在射线上运动.在点M运动的过程中,连结,并以为边在射线上方,作等边,连结.

(1)当___________时,;(2)若为等边三角形,①如图1,求证:;②如图2,当点M运动到线段之外(即点M在线段的延长线上时),其它条件不变(仍为等边三角形),请写出此时线段、、满足的数量关系,并证明.

参考答案与解析

1.A2.D3.B4.D5.A6.D7.D8.A9.D10.D11.12.613.14.15.2016.8cm17.原方程的解为.原方程可化为:经检验,是原方程的根∴原方程的解为18.,解:,当时,原式.19.见解析解:平分,,在和中,,,.20.(1)见解析;(2)见解析;(1)解:如图所示,

;;(2)解:如图所示如图,.21.(1);(2)解:(1)∵,,∴原式;(2)∵,,,原式.22.(1)见解析(2)(1)证明:∵,∴在和中,∴;(2)解:∵,∴,∵,∴平分,∵,∴.23.(1)A型机器人每小时搬运90kg,B型机器人每小时搬运60k(2)10(1)解:设B型机器人每小时搬运xkg材料,则A型机器人每小时搬运(x+30)kg,依题意得:,解得x=60(kg),经检验,x=60是原方程的解,(kg).答:A型机器人每小时搬运90kg,B型机器人每小时搬运60kg.(2)解:设购进A型a台,B型(20﹣a)台,由题意得,90a+60(20﹣a)≥1500,解得,,故最小整数解为:a=10.答:至少购进10台A型机器人.24.(1)2(2)13(3)12(1)∵,,∴∴∴;(2)∵,,∴∴∴∴;(3)∵四边形是矩形,四边形和是正方形∴设,∵矩形的面积为8,阴影部分的面积为20,∴,∴∴(负值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论