版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年陕西省合阳县中考数学模试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在测试卷卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A. B. C. D.2.下列运算正确的是()A.a3•a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a43.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-44.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>15.函数y=ax2与y=﹣ax+b的图象可能是()A. B.C. D.6.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()A. B.2 C. D.27.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.8.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为()A.3122×108元 B.3.122×103元C.3122×1011元 D.3.122×1011元9.如图,△ABC的面积为12,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C处,P为直线AD上的一点,则线段BP的长可能是()A.3 B.5 C.6 D.1010.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2050000平方公里,约占全国面积的21%.将2050000用科学记数法表示应为()A.205万 B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;12.如图,以原点O为圆心的圆交X轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD=.13.如图,正方形ABCD的边长为,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是__________.14.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.15.﹣|﹣1|=______.16.如图,在△ABC中,∠ACB=90°,点D是CB边上一点,过点D作DE⊥AB于点E,点F是AD的中点,连结EF、FC、CE.若AD=2,∠CFE=90°,则CE=_____.三、解答题(共8题,共72分)17.(8分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?18.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.求y与x之间的函数关系式;直接写出当x>0时,不等式x+b>的解集;若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.19.(8分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)122.535yA(万元)0.40.811.22信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出yB与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?20.(8分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.21.(8分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.(1)∠CAD=______度;(2)求∠CDF的度数;(3)用等式表示线段CD和CE之间的数量关系,并证明.22.(10分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,∠ABC的平分线交边AC于点D,延长BD至点E,且BD=2DE,连接AE.(1)求线段CD的长;(2)求△ADE的面积.23.(12分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别
成绩(分)
频数(人数)
频率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
请根据表格提供的信息,解答以下问题:本次决赛共有名学生参加;直接写出表中a=,b=;请补全下面相应的频数分布直方图;若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.24.绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:
设销售员的月销售额为x(单位:万元)。销售部规定:当x<16时,为“不称职”,当时为“基本称职”,当时为“称职”,当时为“优秀”.根据以上信息,解答下列问题:补全折线统计图和扇形统计图;求所有“称职”和“优秀”的销售员销售额的中位数和众数;为了调动销售员的积极性,销售部决定制定一个月销售额奖励标准,凡月销售额达到或超过这个标准的销售员将获得奖励。如果要使得所有“称职”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为多少万元(结果去整数)?并简述其理由.
2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、A【答案解析】
作出树状图即可解题.【题目详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是,故选A.【答案点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.2、D【答案解析】
各项计算得到结果,即可作出判断.【题目详解】A、原式=a5,不符合题意;B、原式=x9,不符合题意;C、原式=2x5,不符合题意;D、原式=-a4,符合题意,故选D.【答案点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3、B【答案解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【题目详解】A.a2·a2=a4,故A选项错误;B.(-a2)3=-a6,正确;C.3a2-6a2=-3a2,故C选项错误;D.(a-2)2=a2-4a+4,故D选项错误,故选B.【答案点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.4、B【答案解析】
根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.【题目详解】∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故选B.【答案点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.5、B【答案解析】选项中,由图可知:在,;在,,∴,所以A错误;选项中,由图可知:在,;在,,∴,所以B正确;选项中,由图可知:在,;在,,∴,所以C错误;选项中,由图可知:在,;在,,∴,所以D错误.故选B.点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.6、A【答案解析】测试卷分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四边形ABHD为矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故选A.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.7、B【答案解析】
由题意可知,当时,;当时,;当时,.∵时,;时,.∴结合函数解析式,可知选项B正确.【答案点睛】考点:1.动点问题的函数图象;2.三角形的面积.8、D【答案解析】
可以用排除法求解.【题目详解】第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.【答案点睛】牢记科学记数法的规则是解决这一类题的关键.9、D【答案解析】
过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是8,得出选项即可.【题目详解】解:如图:
过B作BN⊥AC于N,BM⊥AD于M,
∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面积等于12,边AC=3,
∴×AC×BN=12,
∴BN=8,
∴BM=8,
即点B到AD的最短距离是8,
∴BP的长不小于8,
即只有选项D符合,
故选D.【答案点睛】本题考查的知识点是折叠的性质,三角形的面积,角平分线性质的应用,解题关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.10、C【答案解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】2050000将小数点向左移6位得到2.05,所以2050000用科学记数法表示为:20.5×106,故选C.【答案点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(本大题共6个小题,每小题3分,共18分)11、>【答案解析】
根据反比例函数的性质求解.【题目详解】反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而a<b<0,所以y1>y2故答案为:>【答案点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.12、65°【答案解析】
解:由题意分析之,得出弧BD对应的圆周角是∠DAB,所以,=40°,由此则有:∠OCD=65°考点:本题考查了圆周角和圆心角的关系点评:此类测试卷属于难度一般的测试卷,考生在解答此类测试卷时一定要对圆心角、弧、弦等的基本性质要熟练把握13、2【答案解析】
设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【题目详解】设EF=x,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
∴BD=AB=4+4,EF=BF=x,
∴BE=x,
∵∠BAE=22.5°,
∴∠DAE=90°-22.5°=67.5°,
∴∠AED=180°-45°-67.5°=67.5°,
∴∠AED=∠DAE,
∴AD=ED,
∴BD=BE+ED=x+4+2=4+4,
解得:x=2,
即EF=2.14、【答案解析】
设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.【题目详解】设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中,由勾股定理得:AF2=52-32=16,∴AF=4,DF=5-4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案为.15、2【答案解析】
原式利用立方根定义,以及绝对值的代数意义计算即可求出值.【题目详解】解:原式=3﹣1=2,故答案为:2【答案点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16、【答案解析】
根据直角三角形的中点性质结合勾股定理解答即可.【题目详解】解:,点F是AD的中点,.故答案为:.【答案点睛】此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.三、解答题(共8题,共72分)17、(1);(2)20分钟.【答案解析】
(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.18、(1);(2)x>1;(3)P(﹣,0)或(,0)【答案解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.19、(1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元【答案解析】
(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值【题目详解】解:(1)yB=-0.2x2+1.6x,(2)一次函数,yA=0.4x,(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元,则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,∴当x=3时,W最大值=7.8,答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.20、(1)、(2)证明见解析(3)28【答案解析】测试卷分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;测试卷解析:(1)如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如图2,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.AE=AB-BE=12-4=8,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,解得:x=1.则DE=4+1=2.【答案点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.21、(1)45;(2)90°;(3)见解析.【答案解析】
(1)根据等腰三角形三线合一可得结论;(2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;(3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.【题目详解】(1)解:∵AB=AC,M是BC的中点,∴AM⊥BC,∠BAD=∠CAD,∵∠BAC=90°,∴∠CAD=45°,故答案为:45(2)解:如图,连接DB.∵AB=AC,∠BAC=90°,M是BC的中点,∴∠BAD=∠CAD=45°.∴△BAD≌△CAD.∴∠DBA=∠DCA,BD=CD.∵CD=DF,∴BD=DF.∴∠DBA=∠DFB=∠DCA.∵∠DFB+∠DFA=180°,∴∠DCA+∠DFA=180°.∴∠BAC+∠CDF=180°.∴∠CDF=90°.(3).证明:∵∠EAD=90°,∴∠EAF=∠DAF=45°.∵AD=AE,∴△EAF≌△DAF.∴DF=EF.由②可知,.∴.【答案点睛】此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.22、(1)43;(2)S【答案解析】分析:(1)过点D作DH⊥AB,根据角平分线的性质得到DH=DC根据正弦的定义列出方程,解方程即可;(2)根据三角形的面积公式计算.详解:(1)过点D作DH⊥AB,垂足为点H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,则AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.∵sin∠BAC=HDAD=(2)S△ABD∵BD=2DE,∴S△ABD点睛:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 载重货车课程设计序言
- 配送路线课程设计
- 选矿学生课程设计
- 钻床夹具体的课程设计
- 轨道车站课程设计
- 锅炉省煤器课程设计
- 鸟的自然活动课程设计
- GB/T 45158-2024城市公共设施适老化设施服务要求与评价
- 二零二五年度水电工程环境保护合同3篇
- 主协议模板2024年版下载一
- 政治表现及具体事例三条经典优秀范文三篇
- 高考诗歌鉴赏专题复习:题画抒怀诗、干谒言志诗
- 2023年辽宁省交通高等专科学校高职单招(英语)试题库含答案解析
- GB/T 304.3-2002关节轴承配合
- 漆画漆艺 第三章
- CB/T 615-1995船底吸入格栅
- 光伏逆变器一课件
- 货物供应、运输、包装说明方案
- (完整版)英语高频词汇800词
- 《基础马来语》课程标准(高职)
- IEC61850研讨交流之四-服务影射
评论
0/150
提交评论