版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数在区间上的简图是()A. B.C. D.2.“”是“为锐角”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既非充分又非必要条件3.若函数在上单调递增,则实数a的取值范围是()A. B.C. D.4.下列函数中,在定义域内既是单调函数,又是奇函数的是()A. B.C. D.5.已知集合,,若,则实数的取值范围是()A. B.C. D.6.已知a,b,c∈R,a>bAa2>bC.ac>bc D.a-c>b-c7.英国物理学家和数学家牛顿提出了物体在常温环境下温度变化的冷却模型,设物体的初始温度为,环境温度为,其中,经过后物体温度满足(其中k为正常数,与物体和空气的接触状况有关).现有一个的物体,放在的空气中冷却,后物体的温度是,则()(参考数据:)A.1.17 B.0.85C.0.65 D.0.238.函数的图象可能是A. B.C. D.9.已知均为上连续不断的曲线,根据下表能判断方程有实数解的区间是()x01233.0115.4325.9807.6513.4514.8905.2416.892A. B.C. D.10.如图是三个对数函数的图象,则a、b、c的大小关系是()A.a>b>c B.c>b>aC.c>a>b D.a>c>b11.已知偶函数在单调递减,则使得成立的的取值范围是A. B.C. D.12.设函数若关于的方程有四个不同的解且则的取值范围是A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.有一批材料可以建成360m长的图墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形如图所示,则围成场地的最大面积为______围墙厚度不计14.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.明朝科学家徐光启在《农政全书》中用图1描绘了筒车的工作原理.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.如图2,将筒车抽象为一个几何图形(圆),以筒车转轮的中心为原点,过点的水平直线为轴建立如图直角坐标系.已知一个半径为1.6m的筒车按逆时针方向每30s匀速旋转一周,到水面的距离为0.8m.规定:盛水筒对应的点从水中浮现(时的位置)时开始计算时间,且设盛水筒从点运动到点时所经过的时间为(单位:s),且此时点距离水面的高度为(单位:m)(在水面下则为负数),则关于的函数关系式为___________,在水轮转动的任意一圈内,点距水面的高度不低于1.6m的时长为___________s.15.已知幂函数f(x)的图象过点(4,2),则f=________.16.经过两条直线和的交点,且垂直于直线的直线方程为__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知,且函数是奇函数.(1)求实数a的值;(2)判断函数的单调性,并证明.18.某次数学考试后,抽取了20名同学的成绩作为样本绘制了频率分布直方图如下:(1)求频率分布直方图中的值;(2)求20位同学成绩的平均分;(3)估计样本数据的第一四分位数和第80百分位数(保留三位有效数字)19.给出以下定义:设m为给定的实常数,若函数在其定义域内存在实数,使得成立,则称函数为“函数”.(1)判断函数是否为“函数”;(2)若函数为“函数”,求实数a的取值范围;(3)已知为“函数”,设.若对任意的,,当时,都有成立,求实数的最大值.20.已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.21.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.22.已知函数,其中,且.(1)求的值及的最小正周期;(2)当时,求函数的值域.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】分别取,代入函数中得到值,对比图象即可利用排除法得到答案.【详解】当时,,排除A、D;当时,,排除C.故选:B.2、B【解析】根据充分条件与必要条件的定义判断即可.【详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件.故“”是“为锐角”必要不充分条件.故选:B.【点睛】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.3、A【解析】将写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出的取值范围.【详解】因为,所以,当在上单调递增时,,所以,当在上单调递增时,,所以,且,所以,故选:A.【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤:(1)先分析每一段函数的单调性并确定出参数的初步范围;(2)根据单调性确定出分段点处函数值的大小关系;(3)结合(1)(2)求解出参数的最终范围.4、A【解析】根据解析式可直接判断出单调性和奇偶性.【详解】对于A:为奇函数且在上单调递增,满足题意;对于B:为非奇非偶函数,不合题意;对于C:为非奇非偶函数,不合题意;对于D:在整个定义域内不具有单调性,不合题意.故选:A.5、A【解析】集合表示到的线段,集合表示过定点的直线,,说明线段和过定点的直线有交点,由此能求出实数的取值范围【详解】由题意可得,集合表示到的线段上的点,集合表示恒过定点的直线.∵∴线段和过定点的直线有交点∴根据图像得到只需满足,或故选A.【点睛】本题考查交集定义等基础知识,考查函数与方程思想、数形结合思想,是基础题.解答本题的关键是理解集合表示到的线段,集合表示过定点的直线,再通过得出直线与线段有交点,通过对应的斜率求解.6、D【解析】对A,B,C,利用特殊值即可判断,对D,利用不等式的性质即可判断.【详解】对A,令a=1,b=-2,此时满足a>b,但a2<b对B,令a=1,b=-2,此时满足a>b,但1a>1对C,若c=0,a>b,则ac=bc,故C错;对D,∵a>b∴a-c>b-c,故D正确.故选:D.7、D【解析】根据所给公式,将所给条件中的温度相应代入,利用对数的运算求解即可.【详解】根据题意:的物体,放在的空气中冷却,后物体的温度是,有:,所以,故,即,故选:D.8、C【解析】函数即为对数函数,图象类似的图象,位于轴的右侧,恒过,故选:9、C【解析】根据函数零点的存在性定理可以求解.【详解】由表可知,,,令,则均为上连续不断的曲线,所以在上连续不断的曲线,所以,,;所以函数有零点的区间为,即方程有实数解的区间是.故选:C.10、D【解析】根据对数函数的图象与单调性确定大小【详解】y=logax的图象在(0,+∞)上是上升的,所以底数a>1,函数y=logbx,y=logcx的图象在(0,+∞)上都是下降的,因此b,c∈(0,1),又易知c>b,故a>c>b.故选:D11、C【解析】∵函数为偶函数,∴∵函数在单调递减∴,即∴使得成立的的取值范围是故选C点睛:这个题目考查的是抽象函数的单调性和奇偶性,在不等式中的应用.解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.12、A【解析】画出函数的图像,通过观察的图像与的交点,利用对称性求得与的关系,根据对数函数的性质得到与的关系.再利用函数的单调性求得题目所求式子的取值范围.【详解】画出函数的图像如下图所示,根据对称性可知,和关于对称,故.由于,故.令,解得,所以.,由于函数在区间为减函数,故,故选A.【点睛】本小题主要考查函数的对称性,考查对数函数的性质,以及函数图像的交点问题,还考查了利用函数的单调性求函数的值域的方法,属于中档题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、8100【解析】设小矩形的高为,把面积用表示出来,再根据二次函数的性质求得最大值【详解】解:设每个小矩形的高为am,则长为,记面积为则当时,所围矩形面积最大值为故答案8100【点睛】本题考查函数的应用,解题关键是寻找一个变量,把面积表示为此变量的函数,再根据函数的知识求得最值.本题属于基础题14、①.②.10【解析】根据给定信息,求出以Ox为始边,OP为终边的角,求出点P的纵坐标即可列出函数关系,再解不等式作答.【详解】依题意,点到x轴距离为0.8m,而,则,从点经s运动到点所转过的角为,因此,以Ox为始边,OP为终边的角为,点P的纵坐标为,于是得点距离水面的高度,由得:,而,即,解得,对于k的每个取值,,所以关于的函数关系式为,水轮转动的任意一圈内,点距水面的高度不低于1.6m的时长为10s.故答案为:;10【点睛】关键点睛:涉及三角函数实际应用问题,探求动点坐标,找出该点所在射线为终边对应的角是关键,特别注意,始边是x轴非负半轴.15、【解析】根据图象过点的坐标,求得幂函数解析式,再代值求得函数值即可.【详解】设幂函数为y=xα(α为常数).∵函数f(x)的图象过点(4,2),∴2=4α,∴α=,∴f(x)=,∴f=.故答案为:.【点睛】本题考查幂函数解析式的求解,以及幂函数函数值的求解,属综合简单题.16、【解析】联立方程组求得交点的坐标为,根据题意求得所求直线的斜率为,结合点斜式可得所求直线的方程.【详解】联立方程组,得交点,因为所求直线垂直于直线,故所求直线的斜率,由点斜式得所求直线方程为,即.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)在上是减函数,证明见解析【解析】(1)直接由解出,再把代入检验;(2)直接由定义判断单调性即可.【小问1详解】因为,函数奇函数,所以,解得.此时,,,满足题意.故.【小问2详解】在上是减函数.任取,,则,由∴,故在上是减函数.18、(1);(2);(3)第一四分位数为70.0;第80分位数为【解析】(1)根据频率分布直方图中的频率之和为1即可求解;(2)根据频率分布直方图中平均数的计算公式即可求解;(3)根据题意,结合百分位数的概念与计算公式,即可求解.【详解】(1)依图可得:,解得:(2)根据题意得,(3)由图可知,,,,,对应频率分别为:0.1,0.15,0.35,0.3,0.1,前两组频率之和恰为0.25,故第一四分位数为70.0前三组频率之和为0.6,前四组频率之和为0.9,所以第80分位数在第四组设第80分位数为,则,解得:19、(1)是(2)(3)【解析】(1)根据定义判得时,满足,进而判断;(2)根据题意得,,进而整理得存在实数使得,再结合和讨论求解即可;(3)由题知,故不妨设,进而得,故构造函数,则函数在上单调递增,在作出函数图像,数形结合求解即可.【小问1详解】解:的定义域为,假设函数是“函数,则存在定义域内的实数使得,所以,所以,所以,所以函数“函数【小问2详解】解:函数有意义,则,定义域为因为函数为“函数”,所以存在实数使得成立,即存在实数使得,所以存在实数使得成立,即,所以当时,,满足题意;当时,,即,解得且,所以实数a的取值范围是【小问3详解】解:由为“函数”得,即,所以,不妨设,则由得,所以故令,则在上单调递增,又,作出函数图像如图,所以实数的取值范围为,即实数的最大值为20、(1)周期为,最大值为2,最小值为-1(2)【解析】(1)将函数利用倍角公式和辅助角公式化简为,再利用周期可得最小正周期,由找出对应范围,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系展开后代入可得值.试题解析:(1)所以又所以由函数图像知.(2)解:由题意而所以所以所以=.考点:三角函数性质;同角间基本关系式;两角和的余弦公式21、(1)或,;(2)R上单调递增,证明见解析;(3)【解析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解【详解】解:(1)因为是定义域为R的奇函数,所以,即,解得或,可知,此时满足,所以.(2)在R上单调递增.证明如下:设,则.因为,所以,所以,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度二手住宅购买意向简单协议书6篇
- 二零二四年度房地产项目设计合同详细说明2篇
- 跌倒相关因素及护理进展
- 胃癌治疗现状和进展
- 2024年年度社团个人总结报告
- 护理职业安全防护
- 发绀的紧急护理
- 2024版专利申请与授权代理服务合同3篇
- 2024年度学生保险合同:特殊教育学校与保险公司的协议2篇
- 恶性腹水患者护理
- 地通道雨棚钢-结构计算书
- 中医病证诊断疗效
- 20246月浙江普通高中学业水平选择性考试物理试题及答案
- 六年级数学辅差作业
- 部编版小学语文 阅读训练 鲁迅 (含答案)
- 保温装饰一体板施工规范-2023修改整理
- 大国脊梁知到章节答案智慧树2023年中北大学
- 储罐外壁滑板防腐施工方案
- 圆的认识 说课课件
- 中频炉冶炼设备管理制度
- 初中英语-A country music song changed her life for ever教学设计学情分析教材分析课后反思
评论
0/150
提交评论