版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.如图,水平放置的直观图为,,分别与轴、轴平行,是边中点,则关于中的三条线段命题是真命题的是A.最长的是,最短的是 B.最长的是,最短的是C.最长的是,最短的是 D.最长的是,最短的是2.已知直线是函数图象的一条对称轴,的最小正周期不小于,则的一个单调递增区间为()A. B.C. D.3.若函数的定义域是,则函数的定义域是()A. B.C. D.4.方程的所有实数根组成的集合为()A. B.C. D.5.函数是()A.奇函数,且上单调递增 B.奇函数,且在上单调递减C.偶函数,且在上单调递增 D.偶函数,且在上单调递减6.函数(且)图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.7.若函数唯一的一个零点同时在区间、、、内,那么下列命题中正确的是A.函数在区间内有零点B.函数在区间或内有零点C.函数在区间内无零点D.函数在区间内无零点8.下列函数是偶函数,且在上单调递减的是A. B.C. D.9.函数f(x)=ax(a>0,a≠1)对于任意的实数xA.f(xy)=f(x)f(y) B.f(x+y)=f(x)f(y)C.f(xy)=f(x)+f(y) D.f(x+y)=f(x)+f(y)10.已知函数,若,则实数的取值范围是A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.给出下列命题:①函数是偶函数;②方程是函数的图象的一条对称轴方程;③在锐角中,;④函数的最小正周期为;⑤函数的对称中心是,,其中正确命题的序号是________.12.在直角坐标系内,已知是圆上一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若圆上存在点,使,其中的坐标分别为,则实数的取值集合为__________13.化简求值(1)化简(2)已知:,求值14.已知函数是定义在上的奇函数,当时,,则当时____15.已知函数,x0R,使得,则a=_________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如果函数满足:对定义域内的所有,存在常数,,都有,那么称是“中心对称函数”,对称中心是点.(1)证明点是函数的对称中心;(2)已知函数(且,)的对称中心是点.①求实数的值;②若存在,使得在上的值域为,求实数的取值范围.17.已知集合.(1)当时.求;(2)若是的充分条件,求实数的取值范围.18.(1)求的值;(2)求的值19.已知是同一平面内的三个向量,其中(1)若,且,求:的坐标(2)若,且与垂直,求与夹角20.函数是奇函数.(1)求的解析式;(2)当时,恒成立,求m的取值范围21.我国是世界上人口最多的国家,1982年十二大,计划生育被确定为基本国策.实行计划生育,严格控制人口增长,坚持少生优生,这是直接关系到人民生活水平的进一步提高,也是造福子孙后代的百年大计.(1)据统计1995年底,我国人口总数约12亿,如果人口的自然年增长率控制在1%,到2020年底我国人口总数大约为多少亿(精确到亿);(2)当前,我国人口发展已经出现转折性变化,2015年10月26日至10月29日召开的党的十八届五中全会决定,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子政策,积极开展应对人口老龄化行动.这是继2013年,十八届三中全会决定启动实施“单独二孩”政策之后的又一次人口政策调整.据统计2015年中国人口实际数量大约14亿,若实行全面两孩政策后,预计人口年增长率实际可达1%,那么需经过多少年我国人口可达16亿.(参考数字:,,,)
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】由直观图可知轴,根据斜二测画法规则,在原图形中应有,又为边上的中线,为直角三角形,为边上的中线,为斜边最长,最短故选B2、B【解析】由周期得出的范围,再由对称轴方程求得值,然后由正弦函数性质确定单调性【详解】根据题意,,所以,,,所以,,故,所以.令,,得,.令,得的一个单调递增区间为.故选:B3、C【解析】由题可列出,可求出【详解】的定义域是,在中,,解得,故的定义域为.故选:C.4、C【解析】首先求出方程的解,再根据集合的表示方法判断即可;【详解】解:由,解得或,所以方程的所有实数根组成的集合为;故选:C5、A【解析】根据函数奇偶性和单调性的定义判定函数的性质即可.【详解】解:根据题意,函数,有,所以是奇函数,选项C,D错误;设,则有,又由,则,,则,则在上单调递增,选项A正确,选项B错误.故选:A.6、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误7、D【解析】有题意可知,函数唯一的一个零点应在区间内,所以函数在区间内无零点考点:函数的零点个数问题8、D【解析】函数为奇函数,在上单调递减;函数为偶函数,在上单调递增;函数为非奇非偶函数,在上单调递减;函数为偶函数,在上单调递减故选D9、B【解析】由指数的运算性质得到ax+y【详解】解:由函数f(x)=a得f(x+y)=a所以函数f(x)=ax(a>0,a≠1)对于任意的实数x、y故选:B.【点睛】本题考查了指数的运算性质,是基础题.10、D【解析】画出图象可得函数在实数集R上单调递增,故由,可得,即,解得或故实数的取值范围是.选D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①②③【解析】由诱导公式化简得函数,判断①正确;求出函数的图象的对称轴(),当时,,判断②正确;在锐角中,由化简得到,判断③正确;直接求出函数的最小正周期为,判断④错误;直接求出函数的对称中心是,判断⑤错误.【详解】①因为函数,所以函数是偶函数,故①正确;②因为函数,所以函数图象的对称轴(),即(),当时,,故②正确;③在锐角中,,即,所以,故③正确;④函数的最小正周期为,故④错误;⑤令,解得,所以函数的对称中心是,故⑤错误.故答案为:①②③【点睛】本题考查三角函数的图象与性质、诱导公式与三角恒等变换,是中档题.12、【解析】由题意,∴A(3,2)是⊙C上一点,折叠该圆两次使点A分别与圆上不相同的两点(异于点A)重合,两次的折痕方程分别为x﹣y+1=0和x+y﹣7=0,∴圆上不相同的两点为B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中点为圆心C(3,4),半径为1,∴⊙C的方程为(x﹣3)2+(y﹣4)2=4过P,M,N的圆的方程为x2+y2=m2,∴两圆外切时,m的最大值为,两圆内切时,m的最小值为,故答案为[3,7]13、(1)(2)【解析】(1)利用诱导公式化简即可;(2)先进行弦化切,把代入即可求解.【小问1详解】.【小问2详解】因为,所以.所以.又,所以.14、【解析】设则得到,再利用奇函数的性质得到答案.【详解】设则,函数是定义在上的奇函数故答案为【点睛】本题考查了利用函数的奇偶性计算函数表达式,属于常考题型.15、【解析】由基本不等式及二次函数的性质可得,结合等号成立的条件可得,即可得解.【详解】由题意,,因为,当且仅当时,等号成立;,当且仅当时,等号成立;所以,又x0R,使得,所以,所以.故答案为:.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)见解析;(2)①,②.【解析】(1)求得,根据函数的定义,即可得到函数的图象关于点对称.(2)①根据函数函数的定义,利用,即可求得.②由在上的值域,得到方程组,转化为为方程的两个根,结合二次函数的性质,即可求解.【详解】(1)由题意,函数,可得,所以函数的图象关于点对称.(2)①因为函数(且,)对称中心是点,可得,即,解得(舍).②因为,∴,可得,又因为,∴.所以在上单调递减,由在上的值域为所以,,即,即,即为方程的两个根,且,令,则满足,解得,所以实数的取值范围.【点睛】本题主要考查了函数的新定义,函数的基本性质的应用,以及二次函数的图象与性质的综合应用,其中解答中正确理解函数的新定义,合理利用函数的性质,以及二次函数的图象与性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.17、(1)或.(2)【解析】(1)解一元二次不等式求集合A、B,再由集合的补、并运算求即可.(2)由充分条件知,则有,进而求的取值范围.【小问1详解】,当时,,或,∴或;【小问2详解】由是的充分条件,知:,∴,解得,∴的取值范围为.18、(1);(2)【解析】(1)根据指数幂的运算性质,化简计算,即可得答案.(2)根据对数的运算性质,化简计算,即可得答案.【详解】(1)原式;(2)原式19、(1)或;(2)【解析】解:(1)设(2)代入①中,20、(1);(2)【解析】(1)直接由奇函数的定义列方程求解即可;(2)由条件得在恒成立,转为求不等式右边函数的最小值即可得解.【详解】(1)函数是奇函数,,故,故;(2)当时,恒成立,即在恒成立,令,,显然在的最小值是,故,解得:【点睛】本题主要考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轻松掌握历史教材阅读技巧
- 进口生鲜购买合同
- 远程教学服务合同范本
- 连带责任承诺书
- 配电箱联盟共赢采购协议
- 重庆地理特色解读
- 采购合同的责任分配
- 钢筋工程分包协议书范本
- 钢结构工程劳务合同
- 钢结构工程分包合同的合同价款
- 谁说职业教育没前途-中职开学第一课(奥运全红婵)-【中职专用】2024-2025学年中职主题班会课件
- 基础设施和公用事业特许经营管理办法修订及影响专题讲座课件
- 2024国家开放大学电大专科《学前儿童发展心理学》期末试题及答案试
- 0-3岁婴幼儿心理发展智慧树知到期末考试答案章节答案2024年杭州师范大学
- 部编人教版六年级语文上册第23课《月光曲》精美课件
- 4、2024广西专业技术人员继续教育公需科目参考答案(99分)
- 2024版微生物检测技术服务合同
- 全国导游考试(面试)200问及面试内容(附答案)
- 回收变压器合同范本
- 压疮的预防及护理教学课件
- 工程竣工结算审计服务方案
评论
0/150
提交评论