2022-2023学年广东省深圳市龙城高级中学高一数学第一学期期末检测模拟试题含解析_第1页
2022-2023学年广东省深圳市龙城高级中学高一数学第一学期期末检测模拟试题含解析_第2页
2022-2023学年广东省深圳市龙城高级中学高一数学第一学期期末检测模拟试题含解析_第3页
2022-2023学年广东省深圳市龙城高级中学高一数学第一学期期末检测模拟试题含解析_第4页
2022-2023学年广东省深圳市龙城高级中学高一数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数的值域为R,则实数a的取值范围是()A.(-∞,1] B.[1,+∞)C.(-∞,5] D.[5,+∞)2.设的两根是,则A. B.C. D.3.某空间几何体的正视图是三角形,则该几何体不可能是A.圆柱 B.圆锥C.四面体 D.三棱柱4.已知函数在上的值域为R,则a的取值范围是A. B.C. D.5.将函数图象向左平移个单位,所得函数图象的一条对称轴的方程是A. B.C. D.6.若是的一个内角,且,则的值为A. B.C. D.7.设正实数满足,则的最大值为()A. B.C. D.8.已知命题,则为()A. B.C. D.9.设为偶函数,且在区间上单调递减,,则的解集为()A.(-1,1) B.C. D.(2,4)10.函数,则函数()A.在上是增函数 B.在上是减函数C.在是增函数 D.在是减函数二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合A={0,1,2,3,4,5},集合B={1,3,5,7,9},则Venn图中阴影部分表示的集合中元素的个数为________12.某租赁公司拥有汽车100辆.当每辆车的月租金为元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.若使租赁公司的月收益最大,每辆车的月租金应该定为__________13.已知平面,,直线,若,,则直线与平面的位置关系为______.14.在四边形ABCD中,若,且,则的面积为_______.15.函数在上是x的减函数,则实数a的取值范围是______16.的定义域为_________;若,则_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,建造一个容积为,深为,宽为的长方体无盖水池,如果池底的造价为元/,池壁的造价为元/,求水池的总造价.18.已知函数fx=sin(1)求ω的值;(2)求证:当x∈0,7π1219.已知角的终边与单位圆交于点(1)写出、、值;(2)求的值20.已知二次函数图象经过原点,函数是偶函数,方程有两相等实根.(1)求的解析式;(2)若对任意,恒成立,求实数的取值范围;(3)若函数与的图像有且只有一个公共点,求实数的取值范围.21.已知定义在上的奇函数满足:①;②对任意的均有;③对任意的,,均有.(1)求的值;(2)证明在上单调递增;(3)是否存在实数,使得对任意的恒成立?若存在,求出的取值范围;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分段函数中,根据对数函数分支y=log2x的值域在(1,+∞),而函数的值域为R,可知二次函数y=-x2+a的最大值大于等于1,即可求得a的范围【详解】x>2时,y=log2x>1∴要使函数的值域为R,则y=-x2+a在x≤2上的最大值a大于等于1即,a≥1故选:B【点睛】本题考查了对数函数的值域,由函数的值域及所得对数函数的值域,判断二次函数的的值域范围进而求参数范围2、D【解析】详解】解得或或即,所以故选D3、A【解析】因为圆柱的三视图有两个矩形,一个圆,正视图不可能是三角形,而圆锥、四面体(三棱锥)、三棱柱的正视图都有可能是三角形,所以选A.考点:空间几何体的三视图.4、A【解析】利用分段函数,通过一次函数以及指数函数判断求解即可【详解】解:函数在上的值域为R,当函数的值域不可能是R,可得,解得:故选A【点睛】本题考查分段函数的应用,函数的最值的求法,属于基础题.5、C【解析】将函数图象向左平移个单位得到,令,当时得对称轴为考点:三角函数性质6、D【解析】是的一个内角,,又,所以有,故本题的正确选项为D.考点:三角函数诱导公式的运用.7、C【解析】根据基本不等式可求得最值.【详解】由基本不等式可得,即,解得,当且仅当,即,时,取等号,故选:C.8、D【解析】由全称命题的否定为存在命题,分析即得解【详解】由题意,命题由全称命题的否定为存在命题,可得:为故选:D9、C【解析】由奇偶性可知的区间单调性及,画出函数草图,由函数不等式及函数图象求解集即可.【详解】根据题意,偶函数在上单调递减且,则在上单调递增,且函数的草图如图,或,由图可得-2<x<0或x>2,即不等式的解集为故选:C10、C【解析】根据基本函数单调性直接求解.【详解】因为,所以函数在是增函数,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】由集合定义,及交集补集定义即可求得.【详解】由Venn图及集合的运算可知,阴影部分表示的集合为∁又A={0,1,2,3,4,5},B={1,3,5,7,9},∴A∩B={1,3,5},∴即Venn图中阴影部分表示的集合中元素的个数为3故答案为:3.12、4050【解析】设每辆车的月租金定为元,则租赁公司的月收益:当时,最大,最大值为,即当每车辆的月租金定为元时,租赁公司的月收益最大,最大月收益是,故答案为.【思路点睛】本题主要考查阅读能力、数学建模能力和化归思想以及几何概型概率公式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.解答本题的关键是:将租赁公司的月收益表示为关于每辆车的月租金的函数,然后利用二次函数的性质解答.13、【解析】根据面面平行的性质即可判断.【详解】若,则与没有公共点,,则与没有公共点,故.故答案为:.【点睛】本题考查面面平行的性质,属于基础题.14、【解析】由向量的加减运算可得四边形为平行四边形,再由条件可得四边形为边长为4的菱形,由三角形的面积公式计算可得所求值【详解】在四边形中,,即为,即,可得四边形为平行四边形,又,可得四边形为边长为4的菱形,则的面积为正的面积,即为,故答案为:15、【解析】首先保证真数位置在上恒成立,得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.16、①.;②.3.【解析】空一:根据正切型函数的定义域进行求解即可;空二:根据两角和的正切公式进行求解即可.【详解】空一:由函数解析式可知:,所以该函数的定义域为:;空二:因为,所以.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、2880元【解析】先求出水池的长,再求出底面积与侧面积,利用池底的造价为120元/m2,池壁的造价为80元/m2,即可求水池的总造价【详解】分别设长、宽、高为am,bm,hm;水池的总造价为y元,则V=abh=16,h=2,b=2,∴a=4m,∴S底=4×2=8m2,S侧=2×(2+4)×2=24m2,∴y=120×8+80×24=2880元【点睛】本题考查利用数学知识解决实际问题,考查学生的转化能力,属于基础题18、(1)2;(2)证明见解析【解析】(1)解方程T=π=2π(2)利用三角函数的图象和性质,结合不等式逐步求出函数的最值即得证.【小问1详解】解:由题得T=π=2π【小问2详解】证明:fx因为0≤x≤7∴-π∴-3所以当x∈0,7π12即得证.19、(1)=;=;=(2)【解析】(1)根据已知角的终边与单位圆交于点,结合三角函数的定义即可得到、、的值;(2)依据三角函数的诱导公式化简即可,,最后利用第(1)小问的结论得出答案.试题解析:(1)已知角终边与单位圆交于点,.(2).点睛:本题考查任意角的三角函数的定义,即当角的终边与单位圆的交点为时,则,,,运用诱导公式化简求值,在化简过程中必须注意函数名是否改变以及符号是否改变等.本题是基础题,解答的关键是熟悉任意角的三角函数的定义,单位圆的知识.20、(1);(2);(3).【解析】(1)运用待定系数法,结合题目条件计算得,(2)分离参量,计算在上的最大值(3)转化为有且只有一个实数根,换元,关于的方程只有一个正实根,转化为函数问题解析:(1)设.由题意,得.∴,∵是偶函数,∴即.①∵有两相等实根,∴且②由①②,解得,∴.(2)若对任意,恒成立,只须在恒成立.令,,则.若对任意,恒成立,只须满足.∴.(3)函数与的图像有且只有一个公共点,即有且只有一个实数根,即有且只有一个实数根.令,则关于的方程(记为式)只有一个正实根.若,则不符合题意,舍去.若,则方程的两根异号,∴即.或者方程有两相等正根.解得∴.综上,实数取值范围是.点睛:本题是道综合题21、(1)0;(2)详见解析;(3)存在,.【解析】(1)利用赋值法即求;(2)利用单调性的定义,由题可得,结合条件可得,即证;(3)利用赋值法可求,结合函数的单调性可把问题转化为,是否存在实数,使得或在恒成立,然后利用参变分离法即求.【小问1详解】∵对任意的,,均有,令,则,∴;【小问2详解】,且,则又,对任意的均有,∴,∴∴函数在上单调递增.【小问3详解】∵函数为奇函数且在上单调递增,∴函数在上单调递增,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论