版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.()A. B.C. D.12.函数的图象大致为()A. B.C. D.3.下列函数中,既是奇函数又在区间上单调递增的是()A. B.C. D.4.函数的最小正周期为A. B.C.2 D.45.函数的值域是A. B.C. D.6.已知,,则A. B.C. D.7.的值是A. B.C. D.8.圆与圆的位置关系是A.相离 B.外切C.相交 D.内切9.函数的图象大致()A. B.C. D.10.已知函数,则()A. B.C. D.11.函数的最小值为()A. B.C. D.12.若集合,则下列选项正确的是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是_____14.函数(其中,,)的图象如图所示,则函数的解析式为__________15.___________.16.已知,则函数的最大值为__________.三、解答题(本大题共6小题,共70分)17.如图,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点.(I)证明:AM⊥PM;(II)求二面角P-AM-D的大小.18.(1)试证明差角的余弦公式:;(2)利用公式推导:①和角的余弦公式,正弦公式,正切公式;②倍角公式,,.19.已知向量,,且,满足关系.(1)求向量,的数量积用k表示的解析式;(2)求向量与夹角的最大值.20.已知函数.(1)求的定义域;(2)讨论的单调性;(3)求在区间[,2]上的值域.21.已知函数(1)请在给定的坐标系中画出此函数的图象;(2)写出此函数的定义域及单调区间,并写出值域.22.已知函数(,且)是指数函数.(1)求k,b的值;(2)求解不等式.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】先利用诱导公式把化成,就把原式化成了两角和余弦公式,解之即可.【详解】由可知,故选:B2、A【解析】由函数的奇偶性质可知函数为偶函数,再结合时函数的符号即可得答案.【详解】解:由题知函数的定义域为,关于原点对称,,所以函数为偶函数,其图像关于轴对称,故排除B,D,当时,,故排除C,得A为正确选项.故选:A3、D【解析】利用是偶函数判定选项A错误;利用判定选项B错误;利用的定义域判定选项C错误;利用奇偶性的定义证明是奇函数,再通过基本函数的单调性判定的单调性,进而判定选项D正确.【详解】对于A:是偶函数,即选项A错误;对于B:是奇函数,但,所以在区间上不单调递增,即选项B错误;对于C:是奇函数,但的定义域为,,即选项C错误;对于D:因为,,有,即奇函数;因为在区间上单调递增,在区间上单调递增,所以在区间上单调递增,即选项D正确.故选:D.4、C【解析】分析:根据正切函数的周期求解即可详解:由题意得函数的最小正周期为故选C点睛:本题考查函数的最小正周期,解答此类问题时根据公式求解即可5、C【解析】函数中,因为所以.有.故选C.6、A【解析】∵∴∴∴故选A7、B【解析】利用诱导公式求解.【详解】解:由诱导公式得,故选:B.8、D【解析】圆的圆心,半径圆的圆心,半径∴∴∴两圆内切故选D点睛:判断圆与圆的位置关系的常见方法(1)几何法:利用圆心距与两半径和与差的关系(2)切线法:根据公切线条数确定9、A【解析】根据对数函数的图象直接得出.【详解】因为,根据对数函数的图象可得A正确.故选:A.10、B【解析】由分段函数解析式及指数运算求函数值即可.【详解】由题设,,所以.故选:B.11、B【解析】用二倍角公式及诱导公式将函数化简,再结合二次函数最值即可求得最值.【详解】由因为所以当时故选:B12、C【解析】利用元素与集合,集合与集合的关系判断.【详解】因为集合是奇数集,所以,,,A,故选:C二、填空题(本大题共4小题,共20分)13、①③【解析】A即为函数的定义域,B即为函数的值域,求出每个函数的定义域及值域,直接判断即可【详解】对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;故答案为:①③【点睛】本题以新定义为载体,旨在考查函数的定义域及值域,属于基础题14、【解析】如图可知函数的最大值,当时,代入,,当时,代入,,解得则函数的解析式为15、2【解析】利用换底公式及对数的性质计算可得;【详解】解:.故答案为:16、【解析】换元,,化简得到二次函数,根据二次函数性质得到最值.【详解】设,,则,,故当,即时,函数有最大值为.故答案为:.【点睛】本题考查了指数型函数的最值,意在考查学生的计算能力,换元是解题的关键.三、解答题(本大题共6小题,共70分)17、(1)见解析;(2)45°.【解析】(Ⅰ)以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,求出与的坐标,利用数量积为零,即可证得结果;(Ⅱ)求出平面PAM与平面ABCD的法向量,代入公式即可得到结果.【详解】(I)证明:以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,依题意,可得∴∴即,∴AM⊥PM.(II)设,且平面PAM,则,即∴,取,得;取,显然平面ABCD,∴,结合图形可知,二面角P-AM-D为45°.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18、(1)证明见解析;(2)①答案见解析;②答案见解析【解析】在单位圆里面证明,然后根据诱导公式即可证明和,利用正弦余弦和正切的关系即可证明;用正弦余弦正切的和角公式即可证明对应的二倍角公式.【详解】(1)不妨令.如图,设单位圆与轴的正半轴相交于点,以轴非负半轴为始边作角,它们的终边分别与单位圆相交于点,,.连接.若把扇形绕着点旋转角,则点分別与点重合.根据圆的旋转对称性可知,与重合,从而,=,∴.根据两点间的距离公式,得:,化简得:当时,上式仍然成立.∴,对于任意角有:.(2)①公式的推导:.公式的推导:正切公式的推导:②公式的推导:由①知,.公式的推导:由①知,.公式的推导:由①知,.19、(1),(2)【解析】(1)化简即得;(2)设与的夹角为,求出,再求函数的最值得解.【详解】(1)由已知.,,,.(2)设与的夹角为,则,,当即时,取到最小值为.又,与夹角的最大值为.【点睛】本题主要考查向量的数量积运算,考查向量夹角的计算和函数最值的求解,意在考查学生对这些知识的理解掌握水平和计算能力.20、(1)(2)函数在上为减函数(3)【解析】(1)直接令真数大于0即可得解;(2)由和,结合同增异减即可得解;(3)直接利用(2)的单调性可直接得值域.【小问1详解】由,得,解得.所以定义域为;小问2详解】由在上为增函数,且为减函数,所以在上为减函数;【小问3详解】由(2)知函数单调递减,因为,,所以在区间上的值域为.21、(1)答案见解析(2)答案见解析【解析】(1)根据函数解析式,分别作出各段图象即可;(2)由解析式可直接得出函数的定义域,由图观察,即可得到单调区间以及值域【详解】图象如图所示(2)定义域为或或,增区间为,减区间为,,,,值域为22、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件设备租赁协议
- 2024至2030年水质测试计项目投资价值分析报告
- 2024至2030年无包装空白录音带项目投资价值分析报告
- 2024至2030年多功能网络事务机项目投资价值分析报告
- 2024至2030年中国智能显示报警仪行业投资前景及策略咨询研究报告
- 北京林业大学《计算机网络安全实验》2022-2023学年期末试卷
- 新型建材代建项目协议
- 合作借贷协议
- 化工项目合作协议
- 政府采购按效服务合同
- 2024-2030年中国免烧砖行业发展分析及投资前景预测研究报告
- 人教精通版(2024)三年级上册英语Unit2 School Things教学设计
- 13J933-2体育场地与设施(二)
- 弧形管道施工施工方法及工艺要求
- 2024-2030年中国分布式温度传感(DTS)行业市场发展趋势与前景展望战略分析报告
- 智能制造装备与集成 课件 02 智能制造架构与装备
- 家长会培训:亲子沟通技巧课件
- 2024年新华社招聘122人历年(高频重点提升专题训练)共500题附带答案详解
- 九年级历史上册 第三、四单元 单元测试卷(人教版 24年秋)
- 《安装工程计量与计价》 课件 第1章 安装工程计量与计价基础知识
- 2024-2030年中国汽车金融行业市场发展现状分析及发展趋势与投资前景研究报告
评论
0/150
提交评论