2022年辽宁省灯塔市九年级数学上册期末考试试题含解析_第1页
2022年辽宁省灯塔市九年级数学上册期末考试试题含解析_第2页
2022年辽宁省灯塔市九年级数学上册期末考试试题含解析_第3页
2022年辽宁省灯塔市九年级数学上册期末考试试题含解析_第4页
2022年辽宁省灯塔市九年级数学上册期末考试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知反比例函数的图象过点则该反比例函数的图象位于()A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限2.如图,⊙O的半径为5,将长为8的线段PQ的两端放在圆周上同时滑动,如果点P从点A出发按逆时针方向滑动一周回到点A,在这个过程中,线段PQ扫过区域的面积为()A.9π B.16π C.25π D.64π3.用16米长的铝制材料制成一个矩形窗框,使它的面积为9平方米,若设它的一边长为x,根据题意可列出关于x的方程为()A. B. C. D.4.两直线a、b对应的函数关系式分别为y=2x和y=2x+3,关于这两直线的位置关系下列说法正确的是A.直线a向左平移2个单位得到b B.直线b向上平移3个单位得到aC.直线a向左平移个单位得到b D.直线a无法平移得到直线b5.如图,E为矩形ABCD的CD边延长线上一点,BE交AD于G,AF⊥BE于F,图中相似三角形的对数是()A.5 B.7 C.8 D.106.如图,AB是⊙O的直径,点C,D在直径AB一侧的圆上(异于A,B两点),点E在直径AB另一侧的圆上,若∠E=42°,∠A=60°,则∠B=()A.62° B.70° C.72° D.74°7.一元二次方程的解的情况是()A.无解 B.有两个不相等的实数根C.有两个相等的实数根 D.只有一个解8.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.9.如图,在菱形中,,是线段上一动点(点不与点重合),当是等腰三角形时,()A.30° B.70° C.30°或60° D.40°或70°10.已知一元二次方程的一般式为,则一元二次方程x2-5=0中b的值为()A.1 B.0 C.-5 D.5二、填空题(每小题3分,共24分)11.一定质量的二氧化碳,其体积V(m3)是密度ρ(kg/m3)的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式,当V=1.9m3时,ρ=________.12.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图(1)位置,第二次旋转至图(2)位置…,则正方形铁片连续旋转2018次后,点P的纵坐标为_________.13.已知直线y=kx(k≠0)与反比例函数y=﹣的图象交于点A(x₁,y₁),B(x₂,y₂)则2x₁y₂+x₂y₁的值是_____.14.当x_____时,|x﹣2|=2﹣x.15.如图,有一张矩形纸片,长15cm,宽9cm,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为_____.16.如图,二次函数的图象与轴交于点,与轴的一个交点为,点在抛物线上,且与点关于抛物线的对称轴对称.已知一次函数的图象经过两点,根据图象,则满足不等式的的取值范围是_____________17.如图,已知半⊙O的直径AB=8,将半⊙O绕A点逆时针旋转,使点B落在点B'处,AB'与半⊙O交于点C,若图中阴影部分的面积是8π,则弧BC的长为_____.18.如图,直线AB与⊙O相切于点C,点D是⊙O上的一点,且∠EDC=30°,则∠ECA的度数为_________.三、解答题(共66分)19.(10分)已知在中,,,,为边上的一点.过点作射线,分别交边、于点、.(1)当为的中点,且、时,如图1,_______:(2)若为的中点,将绕点旋转到图2位置时,_______;(3)若改变点到图3的位置,且时,求的值.20.(6分)如图,在中,,的平分线交于点,点在上,以点为圆心,为半径的圆恰好经过点,分别交,于点,(1)试判断直线与的位置关系,并说明理由.(2)若,,求阴影部分的面积(结果保留)21.(6分)如图,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)直接写出点A、B、C的坐标;(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使,请求出点D的坐标;(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.22.(8分)如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,(1)求B到C的距离;(2)如果在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由(≈1.732).23.(8分)某校举行秋季运动会,甲、乙两人报名参加100m比赛,预赛分A、B、C三组进行,运动员通过抽签决定分组.(1)甲分到A组的概率为;(2)求甲、乙恰好分到同一组的概率.24.(8分)某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果精确到0.1米,参考数据:)25.(10分)如图,点D、O在△ABC的边AC上,以CD为直径的⊙O与边AB相切于点E,连结DE、OB,且DE∥OB.(1)求证:BC是⊙O的切线.(2)设OB与⊙O交于点F,连结EF,若AD=OD,DE=4,求弦EF的长.26.(10分)已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(-1,0),与y轴交于点C,求直线BC与这个二次函数的解析式;(3)在直线BC上方的抛物线上有一动点D,DEx轴于E点,交BC于F,当DF最大时,求点D的坐标,并写出DF最大值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先根据点的坐标求出k值,再利用反比例函数图象的性质即可求解.【详解】解:∵反比例函数(k≠0)的图象经过点P(2,-3),

∴k=2×(-3)=-6<0,

∴该反比例函数经过第二、四象限.

故选:C.【点睛】本题考查了反比例函数的性质.反比例函数(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大.2、B【分析】如图,线段PQ扫过的面积是图中圆环面积.作OE⊥PQ于E,连接OQ求出OE即可解决问题.【详解】解:如图,线段PQ扫过的面积是图中圆环面积,作OE⊥PQ于E,连接OQ.∵OE⊥PQ,∴EQ=PQ=4,∵OQ=5,∴OE=,∴线段PQ扫过区域的面积=π•52﹣π•32=16π,故选:B.【点睛】本题主要考查了轨迹,解直角三角形,垂径定理,解题的关键是理解题意,学会添加常用辅助线.3、B【分析】一边长为x米,则另外一边长为:8-x,根据它的面积为9平方米,即可列出方程式.【详解】一边长为x米,则另外一边长为:8-x,

由题意得:x(8-x)=9,

故选:B.【点睛】此题考查由实际问题抽相出一元二次方程,解题的关键读懂题意列出方程式.4、C【分析】根据上加下减、左加右减的变换规律解答即可.【详解】A.直线a向左平移2个单位得到y=2x+4,故A不正确;B.直线b向上平移3个单位得到y=2x+5,故B不正确;C.直线a向左平移个单位得到=2x+3,故C正确,D不正确.故选C【点睛】此题考查一次函数与几何变换问题,关键是根据上加下减、左加右减的变换规律分析.5、D【解析】试题解析:∵矩形ABCD∴AD∥BC,AB∥CD,∠DAB=∠ADE=∴△EDG∽△ECB∽△BAG∵AF⊥BE∴∠AFG=∠BFA=∠DAB=∠ADE=∵∠AGF=∠BGA,∠ABF=∠GBA∴△GAF∽△GBA∽△ABF∴△EDG∽△ECB∽△BAG∽△AFG∽△BFA∴共有10对故选D.6、C【分析】连接AC.根据圆周角定理求出∠CAB即可解决问题.【详解】解:连接AC.∵∠DAB=60°,∠DAC=∠E=42°,∴∠CAB=60°﹣42°=18°,∵AB是直径,∴∠ACB=90°,∴∠B=90°﹣18°=72°,故选:C.【点睛】本题主要考察圆周角定理,解题关键是连接AC.利用圆周角定理求出∠CAB.7、B【分析】求出判别式的值即可得到答案.【详解】∵2-4ac=9-(-4)=13,∴方程有两个不相等的实数根,故选:B.【点睛】此题考查一元二次方程的根的判别式,熟记判别式的计算方法及结果的三种情况是解题的关键.8、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9、C【分析】根据是等腰三角形,进行分类讨论【详解】是菱形,,不符合题意所以选C10、B【分析】对照一元二次方程的一般形式,根据没有项的系数为0求解即可.【详解】∵一元二次方程的一般式为,对于一元二次方程x2-5=0中没有一次项,故b的值为0,故选:B.【点睛】此题主要考查对一元二次方程的一般形式的认识,掌握住各项系数是解题的关键.二、填空题(每小题3分,共24分)11、【解析】由图象可得k=9.5,进而得出V=1.9m1时,ρ的值.【详解】解:设函数关系式为:V=,由图象可得:V=5,ρ=1.9,代入得:k=5×1.9=9.5,故V=,当V=1.9时,ρ=5kg/m1.故答案为5kg/m1.【点睛】本题考查的是反比例函数的应用,正确得出k的值是解题关键.12、1【分析】由旋转方式和正方形性质可知点P的位置4次一个循环,首先根据旋转的性质求出P1~P5的坐标,探究规律后,再利用规律解决问题.【详解】解:∵顶点A的坐标为(3,0),点P(1,2),∴第一次旋转90°后,对应的P1(5,2),

第二次P2(8,1),

第三次P3(10,1),

第四次P4(13,2),

第五次P5(17,2),

发现点P的位置4次一个循环,

∵2018÷4=504余2,

P2018的纵坐标与P2相同为1,故答案为:1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.13、1【分析】由于正比例函数和反比例函数图象都是以原点为中心的中心对称图形,因此它们的交点A、B关于原点成中心对称,则有x₂=﹣x₁,y₂=﹣y₁.由A(x₁,y₂)在双曲线y=﹣上可得x₁y₁=﹣5,然后把x₂=﹣x₁,y₂=﹣y₁代入2x₁y₂+x₂y₁的就可解决问题.【详解】解:∵直线y=kx(k>0)与双曲线y=﹣都是以原点为中心的中心对称图形,∴它们的交点A、B关于原点成中心对称,∴x₂=﹣x₁,y₂=﹣y₁.∵A(x₁,y₁)在双曲线y=﹣上,∴x₁y₁=﹣5,∴2x₁y₂+x₂y₁=2x₁(﹣y₁)+(﹣x₁)y₁=﹣3x₁y₁=1.故答案为:1.【点睛】本题主要考查了反比例函数图象上点的坐标特征、正比例函数及反比例函数图象的对称性等知识,得到A、B关于原点成中心对称是解决本题的关键.14、≤2【分析】由题意可知x﹣2为负数或0,进而解出不等式即可得出答案.【详解】解:由|x﹣2|=2﹣x,可得,解得:.故答案为:≤2.【点睛】本题考查绝对值性质和解不等式,熟练掌握绝对值性质和解不等式相关知识是解题的关键.15、(15﹣2x)(9﹣2x)=1.【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是1cm2,即可得出关于x的一元二次方程,此题得解.【详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据题意得:(15﹣2x)(9﹣2x)=1.故答案是:(15﹣2x)(9﹣2x)=1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.16、【分析】将点A的坐标代入二次函数解析式求出m的值,再根据二次函数解析式求出点C的坐标,然后求出点B的坐标,点A、B之间部分的自变量x的取值范围即为不等式的解集.【详解】解:抛物线经过点抛物线解析式为点坐标对称轴为x=-2,B、C关于对称轴对称,点坐标由图象可知,满足的的取值范围为故答案为:.【点睛】本题考查了利用二次函数的性质来确定系数m和图象上点B的坐标,而根据图象可知满足不等式的的取值范围是在B、A两点之间.17、2π【分析】设∠OAC=n°.根据S阴=S半圆+S扇形BAB′−S半圆=S扇形ABB′,构建方程求出n即可解决问题.【详解】解:设∠OAC=n°.∵S阴=S半圆+S扇形BAB′﹣S半圆=S扇形ABB′,∴=8π,∴n=45,∴∠OAC=∠ACO=45°,∴∠BOC=90°,∴的长==2π,故答案为2π.【点睛】本题考查扇形的面积,弧长公式等知识,解题的关键是记住扇形的面积公式,弧长公式.18、30°【分析】连接OE、OC,根据圆周角定理求出∠EOC=60°,从而证得为等边三角形,再根据切线及等边三角形的性质即可求出答案.【详解】解:如图所示,连接OE、OC,∵∠EDC=30°,∴∠EOC=2∠EDC=60°,又∵OE=OC,∴为等边三角形,∴∠ECO=60°,∵直线AB与圆O相切于点C,∴∠ACO=90°,∴∠ECA=∠ACO-∠ECO=90°-60°=30°.故答案为:30°.【点睛】本题考查了圆的基本性质、圆周角定理及切线的性质,等边三角形的判定与性质,熟练掌握各性质判定定理是解题的关键.三、解答题(共66分)19、(1)2;(2)2;(3)【分析】(1)由为的中点,结合三角形的中位线的性质得到从而可得答案;(2)如图,过作于过作于结合(1)求解再证明利用相似三角形的性质可得答案;(3)过点分别作于点,于点,证明,可得再证明,利用相似三角形的性质求解同法求解从而可得答案.【详解】解:(1)为的中点,故答案为:(2)如图,过作于过作于由(1)同理可得:故答案为:(3)过点分别作于点,于点,∵,∴.∵,∴.∴.∴.∴.∵,,∴.∴∴.∵,∴.∵,∴.∴.同理可得:.∴.【点睛】本题考查的是矩形的性质,三角形中位线的判定与性质,相似三角形的判定与性质,掌握以上知识是解题的关键.20、(1)与相切,见解析;(2)【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)在直角三角形OBD中,设,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,进而求出圆心角的度数,再用直角三角形的面积减去扇形DOF的面积即可确定出阴影部分的面积.【详解】解:(1)与相切证明:连接,是的平分线,,,则,,即又过半径的外端点与相切(2)设,则,根据勾股定理得,即解得:,即中,,,扇形,阴扇形阴影部分的面积为.【点睛】本题考查的是圆的相关知识、勾股定理和不规则图形的面积问题,能够充分调动所学知识是解题的关键.21、(1)点A、B、C的坐标分别为:(−1,0)、(5,0)、(0,−5);(2)P(2,3);(3)D(,);(4)M的坐标为:(2,7)或(2,−3)或(2,6)或(2,−1).【分析】(1)令y=0,则x=−1或5,令x=0,则y=−5,即可求解;(2)点B是点A关于函数对称轴的对称点,连接BC交抛物线对称轴于点P,则点P为所求,即可求解;(3)S△BDE:S△BEF=2:3,则,即:,即可求解;(4)分MB为斜边、MC为斜边、BC为斜边三种情况,分别求解即可.【详解】(1)令y=0,则x=−1或5,令x=0,则y=−5,故点A、B、C的坐标分别为:(−1,0)、(5,0)、(0,−5);(2)抛物线的对称轴为:x=2,点B是点A关于函数对称轴的对称点,连接BC交抛物线对称轴于点P,则点P为所求,直线BC的表达式为:y=−x+5,当x=2时,y=3,故点P(2,3);(3)设点D(x,−x2+4x+5),则点E(x,−x+5),∵S△BDE:S△BEF=2:3,则,即:,解得:m=或5(舍去5),故点D(,);(4)设点M(2,m),而点B、C的坐标分别为:(5,0)、(0,−5),则MB2=9+m2,MC2=4+(m−5)2,BC2=50,①当MB为斜边时,则9+m2=4+(m−5)2+50,解得:m=7;②当MC为斜边时,则4+(m−5)2=9+m2+50,可得:m=−3;③当BC为斜边时,则4+(m−5)2+9+m2=50可得:m=6或−1;综上点M的坐标为:(2,7)或(2,−3)或(2,6)或(2,−1).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性、图形的面积计算等,其中(4),要注意分类求解,避免遗漏.22、(1)12海里;(2)该货船无触礁危险,理由见解析【分析】(1)证出∠BAC=∠ACB,得出BC=AB=24×=12即可;(2)过点C作CD⊥AD于点D,分别在Rt△CBD、Rt△CAD中解直角三角形,可先求得BD的长,然后得出CD的长,从而再将CD与9比较,若大于9则无危险,否则有危险.【详解】解:(1)由题意得:∠BAC=90°﹣10°=30°,∠MBC=90°﹣30°=10°,∵∠MBC=∠BAC+∠ACB,∴∠ACB=∠MBC﹣∠BAC=30°,∴∠BAC=∠ACB,∴BC=AB=24×=12(海里);(2)该货船无触礁危险,理由如下:过点C作CD⊥AD于点D,如图所示:∵∠EAC=10°,∠FBC=30°,∴∠CAB=30°,∠CBD=10°.∴在Rt△CBD中,CD=BD,BC=2BD,由(1)知BC=AB,∴AB=2BD.在Rt△CAD中,AD=CD=3BD=AB+BD=12+BD,∴BD=1.∴CD=1.∵1>9,∴货船继续向正东方向行驶无触礁危险.【点睛】本题考查解直角三角形的应用-方向角问题、等腰三角形的判定与性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23、(1);(2)【分析】(1)直接利用概率公式求出甲分到A组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【详解】解:(1)(2)甲乙两人抽签分组所有可能出现的结果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A)的结果有3种,所以P(A)=.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.24、2.6米【解析】试题分析:过点C作CD⊥AB于点D,根据题意得出∠CAD=30°,∠CBD=60°,分别根据Rt△ACD和Rt△BCD的三角函数将AD和BD用含CD的代数式表示,然后根据AB=3得出答案.试题解析:过作于点∵探测线与地面的夹角为和,∴,,在Rt中,,∴,在Rt中,,∴,又∵∴解得,∴生命所在点的深度约为米.25、(1)见解析;(2)1【分析】(1)连接OE,根据切线的性质得到OE⊥AB,根据平行线的性质得到∠BOC=∠EDO,∠BOE=∠DEO,根据全等三角形的性质得到∠OCB=∠OEB=90°,于是得到BC是⊙O的切线;(2)根据直角三角形的性质得到OD=DE=1,推出四边形DOFE是平行四边形,得到EF=OD=1.【详解】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论