版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是的共轭复数,则()A. B. C. D.2.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=()A. B. C.2 D.﹣23.关于函数,下列说法正确的是()A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像4.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是()A.平均数为20,方差为4 B.平均数为11,方差为4C.平均数为21,方差为8 D.平均数为20,方差为85.已知函数,若,则下列不等关系正确的是()A. B.C. D.6.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数(),则函数的值域为()A. B. C. D.7.已知圆与抛物线的准线相切,则的值为()A.1 B.2 C. D.48.如图,在四边形中,,,,,,则的长度为()A. B.C. D.9.已知等差数列的前项和为,若,则等差数列公差()A.2 B. C.3 D.410.已知复数,(为虚数单位),若为纯虚数,则()A. B.2 C. D.11.已知平面向量,,满足:,,则的最小值为()A.5 B.6 C.7 D.812.设,是非零向量,若对于任意的,都有成立,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知内角,,的对边分别为,,.,,则_________.14.在中,内角的对边分别是,若,,则____.15.已知函数,若恒成立,则的取值范围是___________.16.若函数在区间上恰有4个不同的零点,则正数的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前n项和为,,公差,、、成等比数列,数列满足.(1)求数列,的通项公式;(2)已知,求数列的前n项和.18.(12分)已知椭圆的离心率为,且以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.(1)求椭圆的标准方程;(2)已知动直线l过右焦点F,且与椭圆C交于A、B两点,已知Q点坐标为,求的值.19.(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)求曲线上的点到直线距离的最小值和最大值.20.(12分)选修44:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,点P为曲线C上的动点,求点P到直线l距离的最大值.21.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)设点,若直线与曲线相交于、两点,求的值
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】
先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【题目详解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故选:A.【答案点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.2、D【答案解析】
化简z=(1+2i)(1+ai)=,再根据z∈R求解.【题目详解】因为z=(1+2i)(1+ai)=,又因为z∈R,所以,解得a=-2.故选:D【答案点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.3、B【答案解析】
化简到,根据定义域排除,计算单调性知正确,得到答案.【题目详解】,故函数的定义域为,故错误;当时,,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【答案点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.4、D【答案解析】
由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【题目详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【答案点睛】样本的平均数是,方差为,则的平均数为,方差为.5、B【答案解析】
利用函数的单调性得到的大小关系,再利用不等式的性质,即可得答案.【题目详解】∵在R上单调递增,且,∴.∵的符号无法判断,故与,与的大小不确定,对A,当时,,故A错误;对C,当时,,故C错误;对D,当时,,故D错误;对B,对,则,故B正确.故选:B.【答案点睛】本题考查分段函数的单调性、不等式性质的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.6、B【答案解析】
利用换元法化简解析式为二次函数的形式,根据二次函数的性质求得的取值范围,由此求得的值域.【题目详解】因为(),所以,令(),则(),函数的对称轴方程为,所以,,所以,所以的值域为.故选:B【答案点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.7、B【答案解析】
因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于半径,可知的值为2,选B.【题目详解】请在此输入详解!8、D【答案解析】
设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【题目详解】设,在中,由余弦定理得,则,从而,由正弦定理得,即,从而,在中,由余弦定理得:,则.故选:D【答案点睛】本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.9、C【答案解析】
根据等差数列的求和公式即可得出.【题目详解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故选C.【答案点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.10、C【答案解析】
把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可.【题目详解】∵,∴,∵为纯虚数,∴,解得.故选C.【答案点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题.11、B【答案解析】
建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.【题目详解】建立平面直角坐标系如下图所示,设,,且,由于,所以..所以,即..当且仅当时取得最小值,此时由得,当时,有最小值为,即,,解得.所以当且仅当时有最小值为.故选:B【答案点睛】本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.12、D【答案解析】
画出,,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【题目详解】由题意,得向量是所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【答案点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【题目详解】由正弦定理得,,.故答案为:.【答案点睛】本题考查了正弦定理求角,三角恒等变换,属于基础题.14、【答案解析】
由,根据正弦定理“边化角”,可得,根据余弦定理,结合已知联立方程组,即可求得角.【题目详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:.由故答案为:.【答案点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.15、【答案解析】
求导得到,讨论和两种情况,计算时,函数在上单调递减,故,不符合,排除,得到答案。【题目详解】因为,所以,因为,所以.当,即时,,则在上单调递增,从而,故符合题意;当,即时,因为在上单调递增,且,所以存在唯一的,使得.令,得,则在上单调递减,从而,故不符合题意.综上,的取值范围是.故答案为:.【答案点睛】本题考查了不等式恒成立问题,转化为函数的最值问题是解题的关键.16、;【答案解析】
求出函数的零点,让正数零点从小到大排列,第三个正数零点落在区间上,第四个零点在区间外即可.【题目详解】由,得,,,,∵,∴,解得.故答案为:.【答案点睛】本题考查函数的零点,根据正弦函数性质求出函数零点,然后题意,把正数零点从小到大排列,由于0已经是一个零点,因此只有前3个零点在区间上.由此可得的不等关系,从而得出结论,本题解法属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),();(2).【答案解析】
(1)根据是等差数列,,、、成等比数列,列两个方程即可求出,从而求得,代入化简即可求得;(2)化简后求和为裂项相消求和,分组求和即可,注意讨论公比是否为1.【题目详解】(1)由题意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①当时,.②当时,.【答案点睛】此题等差数列的通项公式的求解,裂项相消求和等知识点,考查了化归和转化思想,属于一般性题目.18、(1);(2).【答案解析】
(1)根据椭圆的离心率为,得到,根据直线与圆的位置关系,得到原心到直线的距离等于半径,得到,从而求得,进而求得椭圆的方程;(2)分直线的斜率存在是否为0与不存在三种情况讨论,写出直线的方程,与椭圆方程联立,利用韦达定理,向量的数量积,结合已知条件求得结果.【题目详解】(1)由离心率为,可得,,且以原点O为圆心,椭圆C的长半轴长为半径的圆的方程为,因与直线相切,则有,即,,,故而椭圆方程为.(2)①当直线l的斜率不存在时,,,由于;②当直线l的斜率为0时,,,则;③当直线l的斜率不为0时,设直线l的方程为,,,由及,得,有,∴,,,,∴,综上所述:.【答案点睛】该题考查直线与圆锥曲线的综合问题,椭圆的标准方程,考查直线与椭圆的位置关系,求向量数量积,在解题的过程中,注意对直线方程的分类讨论,属于中档题目.19、(1)(2)最大值;最小值.【答案解析】
(1)结合极坐标和直角坐标的互化公式可得;(2)利用参数方程,求解点到直线的距离公式,结合三角函数知识求解最值.【题目详解】解:(1)因为,代入,可得直线的直角坐标方程为.(2)曲线上的点到直线的距离,其中,.故曲线上的点到直线距离的最大值,曲线上的点到直线的距离的最小值.【答案点睛】本题主要考查极坐标和直角坐标的转化及最值问题,椭圆上的点到直线的距离的最值求解优先考虑参数方法,侧重考查数学运算的核心素养.20、(1),(2)【答案解析】
试题分析:利用将极坐标方程化为直角坐标方程:化简为ρcosθ+ρsinθ=1,即为x+y=1.再利用点到直线距离公式得:设点P的坐标为(2cosα,sinα),得P到直线l的距离试题解析:解:化简为ρcosθ+ρsinθ=1,则直线l的直角坐标方程为x+y=1.设点P的坐标为(2cosα,sinα),得P到直线l的距离,dmax=.考点:极坐标方程化为直角坐标方程,点到直线距离公式21、(1)60;25(2)见解析,2.1(3)可以认为该校学生的体重是正常的.见解析【答案解析】
(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业灯光系统维护服务协议版B版
- 二零二四年度销售代理合同:产品销售与市场拓展协议
- 2024广告制作安装合同
- 2024专业版股权质押融资协议范本
- 2024中介购房合同样式
- 2024年度医疗健康服务合同(含体检、就医绿色通道)3篇
- 2024版房屋装修合同施工标准与材料3篇
- 2024全新消毒杀菌服务合同下载
- 2024人力资源外包服务合同版
- 2024年云计算服务订阅合同
- 2024年甘肃省民航机场集团社会招聘高频500题难、易错点模拟试题附带答案详解
- 人才招聘与培养计划
- 第八章食品良好生产规范(GMP)
- 学校消毒劳务合同协议书
- 2025届新高考生物-命题趋势分析及备考策略-课件
- NBA球星库里课件
- 2024届高考英语完形填空专题之答题技巧教学设计
- 2024年呼伦贝尔事业单位真题
- 人教版数学五年级上册《解方程(例4、5)》说课稿
- 操作系统大作业(含课程设计)
- GA 2113-2023警服女礼服
评论
0/150
提交评论