




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东省湛江市某学校数学高职单招试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或-12C.-2或-12D.2或12
2.以点(2,0)为圆心,4为半径的圆的方程为()A.(x-2)2+y2=16
B.(x-2)2+y2=4
C.(x+2)2+y2=46
D.(x+2)2+y2=4
3.已知向量a=(2,4),b=(-1,1),则2a-b=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)
4.(X-2)6的展开式中X2的系数是D()A.96B.-240C.-96D.240
5.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是()A.
B.
C.
D.
6.三角函数y=sinx2的最小正周期是()A.πB.0.5πC.2πD.4π
7.直线x+y+1=0的倾斜角为()A.
B.
C.
D.-1
8.若等差数列{an}中,a1=2,a5=6,则公差d等于()A.3B.2C.1D.0
9.已知a=(1,2),则2a=()A.(1,2)B.(2,4)C.(2,1)D.(4,2)
10.A.B.C.
二、填空题(10题)11.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.
12.某校有老师200名,男学生1200名,女学生1000名,现用分层抽样的方法从所有师生中抽取一个容量为240的样本,则从女生中抽取的人数为______.
13.已知△ABC中,∠A,∠B,∠C所对边为a,b,c,C=30°,a=c=2.则b=____.
14.若l与直线2x-3y+12=0的夹角45°,则l的斜线率为_____.
15.函数y=x2+5的递减区间是
。
16.等比数列中,a2=3,a6=6,则a4=_____.
17.
18.当0<x<1时,x(1-x)取最大值时的值为________.
19.
20.sin75°·sin375°=_____.
三、计算题(5题)21.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
22.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
23.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
24.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
25.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
四、证明题(5题)26.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
27.△ABC的三边分别为a,b,c,为且,求证∠C=
28.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
29.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
30.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
五、简答题(5题)31.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.
32.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值
33.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。
34.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
35.某中学试验班有同学50名,其中女生30人,男生20人,现在从中选取2人取参加校际活动,求(1)选出的2人都是女生的概率。(2)选出的2人是1男1女的概率。
六、综合题(5题)36.
37.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
38.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
39.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
40.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
参考答案
1.D圆的切线方程的性质.圆方程可化为C(x-l)2+(y-1)2=1,∴该圆是以(1,1)为圆心,以1为半径的圆,∵直线3x+4y=
2.A圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)2+(y-y0)2=r2.
3.A平面向量的线性计算.因为a=(2,4),b=(-1,1),所以2a-b=(2×2-(-1),2×4-1)=(5,7).
4.D
5.C几何体的三视图.由题意知,俯视图的长度和宽度相等,故C不可能.
6.A
7.C由直线方程可知其斜率k=-1,则倾斜角正切值为tanα=-1,所以倾斜角为3π/4。
8.C等差数列的性质.a5=a1+4d=2+4d=6,d=1.
9.B平面向量的线性运算.=2(1,2)=(2,4).
10.A
11.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。
12.100分层抽样方法.各层之比为200:1200:1000=1:6:5推出从女生中抽取的人数240×5/12=100.
13.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2
14.5或,
15.(-∞,0]。因为二次函数的对称轴是x=0,开口向上,所以递减区间为(-∞,0]。
16.
,由等比数列性质可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.
17.
18.1/2均值不等式求最值∵0<
19.4.5
20.
,
21.
22.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
23.
24.
25.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
26.
∴PD//平面ACE.
27.
28.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
29.
30.
31.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵
∴
若时
故当X<-1时为增函数;当-1≤X<0为减函数
32.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得
33.
34.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
35.(1)2人都是女生的概率P=C(2,30)/C(2,50)=30*29/(50*49)=0.35510
(2)2人都是男生的概率P=C(2,20)/C(2,50)=20*19/(50*49)=0.15510
选出的一男一女的概率P=C(1,20)*C(1,30)/C(2,50)=20*30/((50*49)/2)=0.4897
36.
37.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当a=1时,b
=-1,此时r=1,圆的方程为(x-1)2
+(y+1)2=1
38.
39.
40.解:(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 推动民营经济助力高质量发展的策略与路径探索
- 吉林警察学院《道路与桥梁发展新技术》2023-2024学年第二学期期末试卷
- 2025届贵州省百校大联考学业水平测试模拟历史试题含解析
- 厦门大学《大学提高英语》2023-2024学年第一学期期末试卷
- 浙江国企招聘2024丽水市城投实业有限公司下属子公司招聘8人笔试参考题库附带答案详解
- 2025福建省辉穹工程咨询有限公司招聘2人笔试参考题库附带答案详解
- 2025河南新投数字能源技术有限公司招聘1人笔试参考题库附带答案详解
- 2025浙江温州市国资委公开遴选市属国有企业外部董事专家库人选40人笔试参考题库附带答案详解
- 2025年安徽省能源集团有限公司西北分公司招聘7人笔试参考题库附带答案详解
- 2025山东海汇集团有限公司招聘88人笔试参考题库附带答案详解
- 《纸质文物修复与保护》课件-11书画的装裱品式
- 2022年袋鼠数学竞赛真题一二年级组含答案
- 市场营销策划(本)-形考任务一(第一 ~ 四章)-国开(CQ)-参考资料
- 精神病学(中南大学)智慧树知到期末考试答案2024年
- 人民版四年级下册劳动教案全册2024
- 2023年《房屋建筑学》考试复习题库大全(含答案)
- 寄生虫科普讲座课件
- 四新技术培训课件
- 《社会保险法解读》课件
- 浙江嘉华晶体纤维有限公司年产300吨超高温陶瓷纤维棉及600吨高温陶瓷纤维棉制品环境影响报告表
- 渗碳渗氮的作用及氮碳共渗和碳氮共渗的区别
评论
0/150
提交评论