2022-2023学年安徽省安庆市某学校数学高职单招试题(含答案)_第1页
2022-2023学年安徽省安庆市某学校数学高职单招试题(含答案)_第2页
2022-2023学年安徽省安庆市某学校数学高职单招试题(含答案)_第3页
2022-2023学年安徽省安庆市某学校数学高职单招试题(含答案)_第4页
2022-2023学年安徽省安庆市某学校数学高职单招试题(含答案)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年安徽省安庆市某学校数学高职单招试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.已知过点A(0,-1),点B在直线x-y+1=0上,直线AB的垂直平分线x+2y-3=0,则点B的坐标是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)

2.若f(x)=1/log1/2(2x+1),则f(x)的定义域为()A.(-1/2,0)B.(-1/2,+∞)C.(-1/2,0)∪(0,+∞)D.(-1/2,2)

3.已知A是锐角,则2A是A.第一象限角B.第二象限角C.第一或第二象限角D.D小于180°的正角

4.已知向量a=(1,k),b=(2,2),且a+b与a共线,那么a×b的值为()A.1B.2C.3D.4

5.若sin(π/2+α)=-3/5,且α∈[π/2,π]则sin(π-2α)=()A.24/25B.12/25C.-12/25D.-24/25

6.A.B.C.

7.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1/x,则f(-1)=()A.2B.1C.0D.-2

8.设a>b>0,c<0,则下列不等式中成立的是A.ac>bc

B.

C.

D.

9.A.B.C.D.

10.若a,b两直线异面垂直,b,c两直线也异面垂直,则a,c的位置关系()A.平行B.相交、异面C.平行、异面D.相交、平行、异面

二、填空题(10题)11.

12.有一长为16m的篱笆要围成一个矩形场地,则矩形场地的最大面积是________m2.

13.在△ABC中,C=60°,AB=,BC=,那么A=____.

14.

15.

16.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.

17.

18.

19.

20.函数f(x)=sin2x-cos2x的最小正周期是_____.

三、计算题(5题)21.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

22.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

23.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

24.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

25.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

四、证明题(5题)26.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

27.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

28.己知sin(θ+α)=sin(θ+β),求证:

29.△ABC的三边分别为a,b,c,为且,求证∠C=

30.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

五、简答题(5题)31.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值

32.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。

33.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

34.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

35.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由

六、综合题(5题)36.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

37.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

38.

39.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

40.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

参考答案

1.B由于B在直线x-y+1=0上,所以可以设B的坐标为(x,x+1),AB的斜率为,垂直平分线的斜率为,所以有,因此点B的坐标为(2,3)。

2.C函数的定义域.㏒1/2(2x+l)≠0,所以2x+l>0,2x+l≠1.所以x∈(-1/2,0)∪(0,+∞).

3.D

4.D平面向量的线性运算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b与a共线.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,

5.D同角三角函数的变换,倍角公式.由sin(π/2+α)=-3/5得cosα=-3/5,又α∈[π/2,π],则sinα=4/5,所以sin(π-2α)=sin2α=2sinαcosα==2×4/5×(-3/5)=-24/25.

6.A

7.D函数的奇偶性.由题意得f(-1)=-f(1)=-(1+1)=-2

8.B

9.D

10.Da,c与b均为异面垂直,c与a有可能相交、平行和异面,

11.2

12.16.将实际问题求最值的问题转化为二次函数在某个区间上的最值问题.设矩形的长为xm,则宽为:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.

13.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.

14.-1

15.

16.41π,由题可知,底面边长为4,底面对角线为,外接球的直径即由高和底面对角线组成的矩形的对角线,所以外接球的直径为,外接球的表面积为。

17.

18.7

19.

20.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期为π。

21.

22.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

23.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

24.

25.

26.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

27.

28.

29.

30.

31.

32.

33.

34.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

35.(1)(2)∴又∴函数是偶函数

36.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b

=4,此时r=4,圆的方程为(x-4)2

+(y-4)2=16当a=1时,b

=-1,此时r=1,圆的方程为(x-1)2

+(y+1)2=1

37.解:(1)直线l过A(0,2),B(-2,-2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论