




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年广东省茂名市某学校数学高职单招模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/3
2.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+
B.(x-)2+
C.(x+1)2+2
D.(x+1)2+1
3.下列函数为偶函数的是A.B.C.
4.若实数a,b满足a+b=2,则3a+3b的最小值是()A.18
B.6
C.
D.
5.函数在(-,3)上单调递增,则a的取值范围是()A.a≥6B.a≤6C.a>6D.-8
6.拋掷两枚骰子,两次点数之和等于5的概率是()A.
B.
C.
D.
7.已知向量a=(sinθ,-2),6=(1,cosθ),且a⊥b,则tanθ的值为()A.2B.-2C.1/2D.-1/2
8.A.-1B.-4C.4D.2
9.已知向量a=(1,1),b=(2,x),若a+b与4b-2a平行,则实数x的值是()A.-2B.0C.2D.1
10.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离
二、填空题(10题)11.若ABC的内角A满足sin2A=则sinA+cosA=_____.
12.在锐角三角形ABC中,BC=1,B=2A,则=_____.
13.
14.若直线的斜率k=1,且过点(0,1),则直线的方程为
。
15.已知数列{an}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{an}的前n项和Sn=______.
16.设向量a=(x,x+1),b=(1,2),且a⊥b,则x=_______.
17.设x>0,则:y=3-2x-1/x的最大值等于______.
18.Ig2+lg5=_____.
19.拋物线的焦点坐标是_____.
20.
三、计算题(5题)21.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
22.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
23.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
24.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
25.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
四、证明题(5题)26.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
27.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
28.己知sin(θ+α)=sin(θ+β),求证:
29.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
30.若x∈(0,1),求证:log3X3<log3X<X3.
五、简答题(5题)31.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.
32.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
33.化简
34.解关于x的不等式
35.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值
六、综合题(5题)36.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
38.
39.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
40.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
参考答案
1.D古典概型的概率.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有4种:1,2;1,4;2,3;3,4;,则所求的概率为4/6=2/3
2.C由题可知,f(0)=2=f(-1+1),因此x=-1时,函数值为2,所以正确答案为C。
3.A
4.B不等式求最值.3a+3b≥2
5.A
6.A
7.A平面向量的线性运算∵a⊥b,∴b=sinθ-2cosθ=0,∴tanθ=2.
8.C
9.C
10.B圆与圆的位置关系,两圆相交
11.
12.2
13.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
14.3x-y+1=0因为直线斜率为k=1且过点(0,1),所以方程是y-2=3x,即3x-y+1=0。
15.2n-1
16.-2/3平面向量的线性运算.由题意,得A×b=0.所以x+2(x+1)=0.所以x=-2/3.
17.
基本不等式的应用.
18.1.对数的运算.lg2+lg5==lg(2×5)=lgl0=l.
19.
,因为p=1/4,所以焦点坐标为.
20.π/2
21.
22.
23.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
24.
25.
26.
27.
28.
29.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
30.
31.
32.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
33.sinα
34.
35.
36.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当a=1时,b
=-1,此时r=1,圆的方程为(x-1)2
+(y+1)2=1
37.
38.
39.
40.解:(1)直线l过A(0,2),B(-2,-2)两点,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 弹唱教学面试题及答案
- 弟子出师考试题及答案
- 东莞医院面试题及答案
- 福州美工面试题及答案
- 小儿面部皮疹的临床护理
- 农村载人车辆安全协议书
- 常州锅炉拆除回收协议书
- 抵押贷款解除合同范本
- 关于楼上漏水维修协议书
- T/CADBM 30-2020步入式浴缸
- DB22∕T 3181-2020 公路水路行业安全生产风险分级管控和隐患排查治理双重预防机制建设通用规范
- GB/T 36713-2018能源管理体系能源基准和能源绩效参数
- GB/T 25068.1-2020信息技术安全技术网络安全第1部分:综述和概念
- “二级甲等妇幼保健院”评审汇报材料
- 《狼王梦》读书分享PPT
- 三年级美术下册第10课《快乐的节日》优秀课件1人教版
- 电力市场交易模式
- 第四课《单色版画》 课件
- 门诊手术麻醉原则课件
- 自动喷水灭火系统质量验收项目缺陷判定记录
- 提高肠镜患者肠道准备合格率课件
评论
0/150
提交评论