版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年辽宁省大连市某学校数学高职单招试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.A.B.C.
2.设平面向量a(3,5),b(-2,1),则a-2b的坐标是()A.(7,3)B.(-7,-3)C.(-7,3)D.(7,-3)
3.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为()A.1/100B.1/20C.1/99D.1/50
4.已知的值()A.
B.
C.
D.
5.已知集合,则等于()A.
B.
C.
D.
6.下列结论中,正确的是A.{0}是空集
B.C.D.
7.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(CUA)∩(CUB)=()A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}
8.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6
9.A.B.C.D.
10.“a,b,c都不等于0”的否定是A.a,b,c都等于0B.a,b,c不都等于0C.a,b,c中至少有一个不等于0D.a,b,c中至少有一个等于0
二、填空题(10题)11.以点(1,0)为圆心,4为半径的圆的方程为_____.
12.已知(2,0)是双曲线x2-y2/b2=1(b>0)的焦点,则b=______.
13.若f(X)=,则f(2)=
。
14.
15.已知正实数a,b满足a+2b=4,则ab的最大值是____________.
16.
17.
18.
19.集合A={1,2,3}的子集的个数是
。
20.
三、计算题(5题)21.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
22.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
23.解不等式4<|1-3x|<7
24.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
25.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
四、证明题(5题)26.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
27.△ABC的三边分别为a,b,c,为且,求证∠C=
28.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
29.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
30.若x∈(0,1),求证:log3X3<log3X<X3.
五、简答题(5题)31.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.
32.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积
33.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC
34.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.
35.化简
六、综合题(5题)36.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
37.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
38.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
39.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
40.
参考答案
1.A
2.A由题可知,a-2b=(3,5)-2(-2,1)=(7,3)。
3.B简单随机抽样方法.总体含有100个个体,则每个个体被抽到的概率为1/100,所以以简单随机抽样的方法从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为1/100×5=1/20.
4.A
5.B由函数的换算性质可知,f-1(x)=-1/x.
6.B
7.B集合补集,交集的运算.因为CuA={2,4,6,7,9},CuB={0,1,3,7,9},所以(CuA)∩(CuB)={7,9}.
8.D设公比等于q,则由题意可得,,解得,或。当时,,当时,,所以结果为。
9.A
10.D
11.(x-1)2+y2=16圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16
12.
双曲线的性质.由题意:c=2,a=1,由c2=a2+b2.得b2=4-1=3,所以b=.
13.00。将x=2代入f(x)得,f(2)=0。
14.56
15.2基本不等式求最值.由题
16.
17.60m
18.π/2
19.8
20.75
21.
22.
23.
24.
25.
26.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
27.
28.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
29.
30.
31.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=
32.
33.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC
34.
35.
36.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方程为(x-4)2
+(y-4)2=16当a=1时,b
=-1,此时r=1,圆的方程为(x-1)2
+(y+1)2=1
37.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度采购环节担保协议范本
- 培训课件模板教学课件
- 2024年商场主体建设施工协议
- 企业标准技术条件检测能力确认表
- 开发合作合同范本
- 上海建筑施工合同范本
- 房产中介合同范本
- 浦东新区厂房合同范本
- 2025年中国户外电子屏广告行业市场全景评估及未来投资趋势预测报告(智研咨询)
- 小型机动车买卖合同范本
- 药物滥用知识培训课件
- 四年级科学食物的消化课件
- (新版)血液透析专科理论考试题库(参考500题)
- 市人民医院卒中防治中心培训制度
- 可随意编辑【封面+自荐信+简历】百年树人寓意求职个人简历
- 中医经穴推拿模板课件
- “美丽医院”建设工作汇报材料
- 钻孔灌注桩钻进成孔原始记录表
- 小学综合实践二年级上册第1单元《主题活动一:交通标志我会认》教案
- 压力是否有利于成长辩论稿
- 药品生产质量管理工程完整版课件
评论
0/150
提交评论