




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年湖北省襄樊市某学校数学单招试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.已知向量a=(1,k),b=(2,2),且a+b与a共线,那么a×b的值为()A.1B.2C.3D.4
2.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切
3.若函数f(x)=kx+b,在R上是增函数,则()A.k>0B.k<0C.b<0D.b>0
4.5人排成一排,甲必须在乙之后的排法是()A.120B.60C.24D.12
5.(X-2)6的展开式中X2的系数是D()A.96B.-240C.-96D.240
6.A.B.C.
7.已知集合A={1,2,3,4,5,6,7},B={3,4,5},那么=()A.{6,7}B.{1,2,6,7}C.{3,4,5}D.{1,2}
8.圆心为(1,1)且过原点的圆的方程是()A.(x-l)2+(y-1)2=1
B.(x+1)2+(y+1)2=1
C.(x+1)2+(y+1)2=2
D.(x-1)2+(y-1)2=2
9.已知椭圆x2/25+y2/m2=1(m<0)的右焦点为F1(4,0),则m=()A.-4B.-9C.-3D.-5
10.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定
二、填空题(10题)11.
12.已知函数,若f(x)=2,则x=_____.
13.某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是_______.
14.如图所示,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为____。
15.
16.设平面向量a=(2,sinα),b=(cosα,1/6),且a//b,则sin2α的值是_____.
17.双曲线x2/4-y2/3=1的虚轴长为______.
18.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.
19.若直线6x-4x+7=0与直线ax+2y-6=0平行,则a的值等于_____.
20.
三、计算题(5题)21.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
22.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
23.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
24.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
25.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
四、证明题(5题)26.己知sin(θ+α)=sin(θ+β),求证:
27.若x∈(0,1),求证:log3X3<log3X<X3.
28.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
29.
30.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
五、简答题(5题)31.已知cos=,,求cos的值.
32.解关于x的不等式
33.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程
34.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。
35.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
37.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
38.
39.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
40.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
参考答案
1.D平面向量的线性运算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b与a共线.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,
2.D由题可知,直线2x-y+7=0到圆(x-b)2+(y-b)2=20的距离等于半径,所以二者相切。
3.A
4.C
5.D
6.A
7.B由题可知AB={3,4,5},所以其补集为{1,2,6,7}。
8.D圆的标准方程.圆的半径r
9.C椭圆的定义.由题意知25-m2=16,解得m2=9,又m<0,所以m=-3.
10.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。
11.-16
12.
13.150.分层抽样方法.该校教师人数为2400×(160-150)/160=150(人).
14.2/π。
15.4.5
16.2/3平面向量的线性运算,三角函数恒等变换.因为a//b,所以2x1/6-sinαcosα=0即sinαcosα=1/3.所以sin2α=2sinαcosα=2/3.
17.2双曲线的定义.b2=3,.所以b=.所以2b=2.
18.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3
19.-3,
20.π
21.
22.
23.
24.
25.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
26.
27.
28.
29.
30.
∴PD//平面ACE.
31.
32.
33.
34.
35.
36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为
37.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 梦魇的临床护理
- 工程新质生产力
- 邵阳初三联考试卷及答案
- 山西高一文科试卷及答案
- 三中地理会考试卷及答案
- 矿山机械企业管理与创新能力考核试卷
- 电光源光生物安全性与健康影响考核试卷
- 家用电器产品创新设计理念探讨考核试卷
- 棉织造行业智能物流系统设计考核试卷
- 咖啡大师考试试题及答案
- 人教版小学二年级上册数学 期中测试卷
- (二模)湛江市2025年普通高考测试(二)政治试卷(含答案)
- 给梦一个奔跑的方向-“距离梦想大学有多远”-高中热点大观园
- 防空掩体知识培训课件
- 工业和信息化部产业发展促进中心招聘笔试真题2024
- 2025年江西上饶铅山城投控股集团有限公司招聘笔试参考题库附带答案详解
- 模拟雨的形成课件
- 多维数据循环嵌套分析-全面剖析
- 数学全等三角形教学设计 2024-2025学年北师大版数学七年级下册
- 桥梁水下结构内部缺陷超声波检测基于技术
- 事故隐患内部报告奖励制度1
评论
0/150
提交评论