初中数学北师大九年级上册 一元二次方程用因式分解法求解一元二次方程 教学设计_第1页
初中数学北师大九年级上册 一元二次方程用因式分解法求解一元二次方程 教学设计_第2页
初中数学北师大九年级上册 一元二次方程用因式分解法求解一元二次方程 教学设计_第3页
初中数学北师大九年级上册 一元二次方程用因式分解法求解一元二次方程 教学设计_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、用因式分解法求解一元二次方程一、教材分析 教科书基于用因式分解法解一元二次方程是解决特殊问题的一种简便、特殊的方法的基础之上,提出了本课的具体学习任务:態根据已有的分解因式知识解决形如“x(x-a)=0”和“(x-d)2=0”的特殊一元二次方程。但这仅仅是这堂课具体的数学目标,或者说是一个近期目标。数学数学由一系列相互联系而又新次递进的课堂组成,因而具体的课堂数学也应满足于远期目标,或者说,效学学的远期目标,应该与具体的课堂数学任务产生实质性联系。本课(因式分解法内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程数学的远期目标:“经历由具体间题抽象出一元二次方程的过程,体会方程是刻

2、画现实世界中数量关系的一个有效数学模型,并在解一元二次方程的过程中体会转化的数学思想,进一步培养学生分析问题、解决问题的意识和能力。同时也力图在学习中逐步达成对于学生情感培养的目标。二、学情分析学生的知识技能基础:在前几册学生已经学习了一元一次方程、二元一次方程组可化为一元一次方程的分式方程等,初步感受了方程的模型作用,并积累了解一元一次方程的方法,熟练掌握了解一元一次方程的步骤:在八年级学生学习了因式分解,掌握了提公因式法及运用公式法(平方差、完発平方)熟练的分解因式:在本章前几节课中又学习了配方法及公式法解一元次方程,掌握了这两种方法的解题思路及步骤。学生活动经验基础:在相关知识的学习过程

3、中,学生已经经历了用配方法和公式法求一元二次方程的解的过程,并在现实情景中加以应用,切实提高了应用意识和能力,也感受到了解一元二次方程的必要性和作用:同时在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。三、教学目标 能用因式分解法解某些数字系数的一元二次方程,通过“降次”把一元二次方程转化为两个一元一次方程,体会转化思想。 2、 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性。四、教学重难点: 1重点:正确、熟练地用因式分解法解一元二次方程 2难点:让学生通过比较解一元二次方程的多种方法感悟用因式分解

4、法使解题简便五、教学过程(一)复习回顾什么是因式分解?因式分解有哪些方法? (二)探究新知问题1:一个数的平方与这个数的3倍有可能相等吗?如果能,这个数是几?你是怎样求出来的?课件展示小颖、小明、小亮三位同学的解法,让同学们讨论:他们分别用的那种解法?那些方法是对的,那些方法是错的,错的原因是什么?引导学生得出结论:如果ab=0那么a=0或b=0。并引发学生思考:能不能将“或”换成“且”?练习1:下列各方程的根分别是多少?(1)x(x-2)=0(2)(y+2)(y-3)=0(3)(3x+6)(2x-4)=0(4)x2=x问题2:什么样的一元二次方程可以用因式分解法解?引导学生观察小亮的解题过程

5、并总结:1、当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种解一元二次方程的方法称为分解因式法。它的理论依据就是:如果ab=0那么a=0或b=0。2、因式分解法的基本步骤一移-方程的右边=0;二分-方程的左边因式分解三化-方程化为两个一元一次方程;四解-写出方程两个解;并用口诀为:右化零 左分解 两因式 各求解练习2:解下列方程解:原方程可变形为 (X-2)-X(X-2)=0 (X-2)(1-X)=0 解:原方程可变形为 (X-2)-X(X-2)=0 (X-2)(1-X)=0 X-2=0或1-X=0 X1=2 , X2=1 解:移项,得:5x2-4x=0 因式分解,得:x(5x-4)=0 于是,得:x=0或5x-4=0 x1=0,x2=4/5 想一想:你能用因式分解法解方程x2-4=0,(x+1)2-25=0,2x2-3x+1=0吗?拓展提升:填一填:在表格中填上各种一元二次方程的解法及适用类型. (三)随堂检测用适当的方法解下列方程:1、 X2-4X-7=0 2、(5X-1)2=3(5X-1) 3、2X2-2X=-3 六、感悟与收获:1、因式分解法解一元二

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论