阳江市重点中学2023学年数学九年级第一学期期末达标测试试题含解析_第1页
阳江市重点中学2023学年数学九年级第一学期期末达标测试试题含解析_第2页
阳江市重点中学2023学年数学九年级第一学期期末达标测试试题含解析_第3页
阳江市重点中学2023学年数学九年级第一学期期末达标测试试题含解析_第4页
阳江市重点中学2023学年数学九年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出m的值是

2、( )A8B16C24D322如图,当刻度尺的一边与O相切时,另一边与O的两个交点处的读数如图所示(单位:cm),圆的半径是5,那么刻度尺的宽度为( )AcmB4 cmC3cmD2 cm3已知是方程x23x+c0的一个根,则c的值是()A6B6CD24如图,是内两条互相垂直的直径,则的度数是( )ABCD5在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为( )ABCD6已知函数的图象过点,则该函数的图象必在( )A第二、三象限B第二、四象限C第一、三象限D第三、四象限7如图,ABC内接于O,ODAB于D,OE

3、AC于E,连结DE且DE,则弦BC的长为()AB2C3D8如图,这是一个由四个半径都为1米的圆设计而成的花坛,圆心在同一直线上,每个圆都会经过相邻圆的圆心,则这个花坛的周长(实线部分)为()A4米B米C3米D2米9如图,在RtABC中,CD是斜边AB上的中线,已知AC=3,CD=2,则cosA的值为( )ABCD10把抛物线y=x2向上平移3个单位,平移后抛物线的表达式是( )Ay=-3By=+3Cy=Dy=11若关于的方程有实数根,则的取值范围是( )ABCD12已知AB、CD是O的两条弦,ABCD,AB6,CD8,O的半径为5,则AB与CD的距离是()A1B7C1或7D无法确定二、填空题(

4、每题4分,共24分)13如图,正方形ABCD的对角线AC与BD相交于点O,ACB的角平分线分别交AB、BD于M、N两点,若AM2,则线段ON的长为_14二次函数yax24axc的最大值为4,且图象过点(3,0),则该二次函数的解析式为_15如图,在ABC中,C=90,AC=3,若cosA=,则BC的长为_.16在中,若,则的度数是_17方程x22020 x的解是_18某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率设每次降价的百分率为x,所列方程是_三、解答题(共78分)19(8分)某玩具商店以每件60元为成本购进一批新型玩具,以每件1

5、00元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,尽快减少库存,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.(1)若商店打算每天盈利1200元,每件玩具的售价应定为多少元?(2)若商店为追求效益最大化,每件玩具的售价定为多少元时,商店每天盈利最多?最多盈利多少元?20(8分)如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA1,tanBAO3,将此三角形绕原点O逆时针旋转90,得到DOC,抛物线yax2+bx+c经过点A、B、C(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点

6、E,连接PE,交CD于F,求以C、E、F为顶点三角形与COD相似时点P的坐标21(8分)如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,摆动臂可绕点旋转,(1)在旋转过程中当、三点在同一直线上时,求的长,当、三点为同一直角三角形的顶点时,求的长(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,如图2,此时,求的长(3)若连接(2)中的,将(2)中的形状和大小保持不变,把绕点在平面内自由旋转,分别取、的中点、,连接、随着绕点在平面内自由旋转, 的面积是否发生变化,若不变,请直接写出的面积;若变化,的面积是否存在最大与最小?若存在,请直接写出面积的最大值与最小值,(

7、温馨提示)22(10分)如图,抛物线与轴交于点和点,与轴交于点,其对称轴为,为抛物线上第二象限的一个动点(1)求抛物线的解析式并写出其顶点坐标;(2)当点在运动过程中,求四边形面积最大时的值及此时点的坐标23(10分)某店以每件60元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件售价每降低1元,其销量可增加5件(1)该店销售该商品原来一天可获利润 元(2)设后来该商品每件售价降价元,此店一天可获利润元若此店为了尽量多地增加该商品的销售量,且一天仍能获利2625元,则每件商品的售价应降价多少元?求与之间的函数关系式,当该商品每件售价为多少元时,

8、该店一天所获利润最大?并求最大利润值24(10分)抛物线yx2+x+b与x轴交于A、B两点,与y轴交于点C(1)若B点坐标为(2,0)求实数b的值;如图1,点E是抛物线在第一象限内的图象上的点,求CBE面积的最大值及此时点E的坐标(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D四点能构成平行四边形,求实数b的值(提示:若点M,N的坐标为M(x,y),N(x,y),则线段MN的中点坐标为(,)25(12分)如图,已知抛物线(1)用配方法将化成的形式,并写出其顶点坐标;(2)直接写出该抛物线与轴的交点坐标26在二次函数的学习中,教材有如下内容:小聪和小明通过例题的学

9、习,体会到利用函数图象可以求出方程的近似解.于是他们尝试利用图象法探究方程的近似解,做法如下:请你选择小聪或小明的做法,求出方程的近似解(精确到0.1).参考答案一、选择题(每题4分,共48分)1、B【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可【详解】通过大量重复试验后发现,摸到黑球的频率稳定于0.5,=0.5,解得:m=1故选:B【点睛】考查了利用频率估计概率,解题关键是利用了用大量试验得到的频率可以估计事件的概率2、D【解析】连接OA,过点O作OD

10、AB于点D,ODAB,AD=12AB=12(91)=4cm,OA=5,则OD=5DE,在RtOAD中,,即 解得DE=2cm.故选D.3、B【解析】把x=代入方程x2-3x+c=0,求出所得方程的解即可【详解】把x=代入方程x2-3x+c=0得:3-9+c=0,解得:c=6,故选B【点睛】本题考查了一元二次方程的解的应用,解此题的关键是得出关于c的方程4、C【分析】根据直径的定义与等腰三角形的性质即可求解【详解】是内两条互相垂直的直径,ACBD又OB=OC=故选C【点睛】此题主要考查圆内的角度求解,解题的关键是熟知圆内等腰三角形的性质5、B【分析】两辆阅兵车的车牌号共含14位数字或字母,其中数

11、字9出现了3次,根据概率公式即可求解.【详解】解:两辆阅兵车的车牌号共含14位数字或字母,其中数字9出现了3次,所以“9”这个数字在这两辆车牌号中出现的概率为.故选:B.【点睛】本题考查了概率的计算,掌握概率计算公式是解题关键.6、B【解析】试题分析:对于反比例函数y=,当k0时,函数图像在一、三象限;当k0时,函数图像在二、四象限.根据题意可得:k=2.考点:反比例函数的性质7、C【分析】由垂径定理可得ADBD,AECE,由三角形中位线定理可求解【详解】解:ODAB,OEAC,ADBD,AECE,BC2DE23故选:C【点睛】本题考查了三角形的外接圆与外心,三角形的中位线定理,垂径定理等知识

12、,灵活运用这些性质进行推理是本题的关键8、A【分析】根据弧长公式解答即可【详解】解:如图所示:这是一个由四个半径都为1米的圆设计而成的花坛,圆心在同一直线上,每个圆都会经过相邻圆的圆心,OAOCOAOOOC1,AOC120,AOB60,这个花坛的周长,故选:A【点睛】本题考查了圆的弧长公式,找到弧所对圆心角度数是解题的关键9、A【分析】利用直角三角形的斜边中线与斜边的关系,先求出AB,再利用直角三角形的边角关系计算cosA【详解】解:CD是RtABC斜边AB上的中线,AB=2CD=4,cosA=.故选A.【点睛】本题考查了直角三角形斜边的中线与斜边的关系、锐角三角函数掌握直角三角形斜边的中线与

13、斜边的关系是解决本题的关键在直角三角形中,斜边的中线等于斜边的一半10、B【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.【详解】抛物线y=x2向上平移3个单位,平移后的抛物线的解析式为:y=x2+3.故答案为:B.【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.11、D【分析】用直接开平方法解方程,然后根据平方根的意义求得m的取值范围.【详解】解:关于的方程有实数根故选:D【点睛】本题考查直接开平方法解方程,注意负数没有平方根是本题的解题关键.12、C【分析】由于弦AB、CD的具体位置不能确定,故应分两种情况进行讨论:弦AB和CD在圆心同侧;弦AB和CD在圆心

14、异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:当弦AB和CD在圆心同侧时,如图,过点O作OFCD,垂足为F,交AB于点E,连接OA,OC,ABCD,OEAB,AB8,CD6,AE4,CF3,OAOC5,由勾股定理得:EO3,OF4,EFOFOE1;当弦AB和CD在圆心异侧时,如图,过点O作OEAB于点E,反向延长OE交AD于点F,连接OA,OC,EFOF+OE1,所以AB与CD之间的距离是1或1故选:C【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧. 也考查了勾股定理及分类讨论的思想的应用.二、填空题(每题4分,共24分)13、1【分析】作MHAC于

15、H,如图,根据正方形的性质得MAH45,则AMH为等腰直角三角形,再求出AH,MH,MB,CH,CO,然后证明CONCHM,再利用相似三角形的性质可计算出ON的长【详解】解:作MHAC于H,如图,四边形ABCD为正方形,MAH45,AMH为等腰直角三角形,AHMHAM2,CM平分ACB,MHAC,MBBCBMMH,AB2+,ACAB2+2,OCAC+1,CHACAH2+22+,BDAC,ONMH,CONCHM,即,ON1故答案为:1【点睛】本题主要考查正方形的性质及相似三角形的判定及性质,掌握正方形的性质及相似三角形的性质是解题的关键14、y4x216x12【解析】抛物线的对称轴为直线x=2,

16、抛物线的顶点坐标为(2,4),又抛物线过点(3,0),解得:a=4,c=12,则抛物线的解析式为y4x216x12.故答案为y4x216x12.【点睛】本题考查用待定系数法求二次函数解析式,解此题的关键在于先根据顶点坐标与函数系数的关系,求得顶点坐标,再用待定系数法求函数解析式即可.15、1【分析】由题意先根据C=90,AC=3,cosA=,得到AB的长,再根据勾股定理,即可得到BC的长【详解】解:ABC中,C=90,AC=3,cosA=,AB=5,BC=1.故此空填1【点睛】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做A的余弦,记作cosA,以此并结合勾股定理分析求解16、

17、【分析】先根据非负数的性质求出,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论【详解】在中,故答案为【点睛】本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.17、x10,x21【分析】利用因式分解法求解可得【详解】移项得:x21x0,x(x1)0,则x0或x10,解得x10,x21,故答案为:x10,x21【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键18、【分析】根据降价后的价格=降价前的价格(1-降价的百分率),

18、则第一次降价后的价格是560(1-x),第二次降价后的价格是560(1-x)2,据此列方程即可【详解】解:设每次降价的百分率为x,由题意得:560(1-x)2=1,故答案为560(1-x)2=1【点睛】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程三、解答题(共78分)19、 (1)每件玩具的售价为80元;(2)每件玩具的售价为85元时,每天盈利最多,最多盈利1250元.【分析】(1)根据题意,可以得到关于x的一元二次方程,从而可以解答本题;(2)根据题意可以得到利润与售价的函数关系式,然后根据二次函数的性质即可解答本题【详解】解:(

19、1)设每件玩具的售价为元,解得:,扩大销售,增加盈利,尽快减少库存,答:每件玩具的售价为80元;(2)设每件玩具的售价为元时,利润为元,即当时,有最大值为1250元,答:当每件玩具的售价为85元时,商店每天盈利最多,最多盈利1250元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质解答20、(1)抛物线的解析式为y=x22x+1;(2)当CEF与COD相似时,P点的坐标为(1,4)或(2,1)【解析】(1)根据正切函数,可得OB,根据旋转的性质,可得DOCAOB,根据待定系数法,可得函数解析式;(2)分两种情况讨论:当CEF90时,CEFCOD

20、,此时点P在对称轴上,即点P为抛物线的顶点;当CFE90时,CFECOD,过点P作PMx轴于M点,得到EFCEMP,根据相似三角形的性质,可得PM与ME的关系,解方程,可得t的值,根据自变量与函数值的对应关系,可得答案【详解】(1)在RtAOB中,OA1,tanBAO1,OB1OA1DOC是由AOB绕点O逆时针旋转90而得到的,DOCAOB,OCOB1,ODOA1,A,B,C的坐标分别为(1,0),(0,1),(1,0),代入解析式为,解得:,抛物线的解析式为yx22x+1;(2)抛物线的解析式为yx22x+1,对称轴为l1,E点坐标为(1,0),如图,分两种情况讨论:当CEF90时,CEFC

21、OD,此时点P在对称轴上,即点P为抛物线的顶点,P(1,4);当CFE90时,CFECOD,过点P作PMx轴于M点,CFE=PME=90,CEF=PEM,EFCEMP,MP1ME点P的横坐标为t,P(t,t22t+1)P在第二象限,PMt22t+1,ME1t,t0,t22t+11(1t),解得:t12,t21(与t0矛盾,舍去)当t2时,y(2)22(2)+11,P(2,1)综上所述:当CEF与COD相似时,P点的坐标为(1,4)或(2,1)【点睛】本题是二次函数综合题解(1)的关键是利用旋转的性质得出OC,OD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP1ME21、

22、(1)或;长为或;(2);(3)的面积会发生变化;存在,最大值为:,最小值为:【分析】(1)分两种情形分别求解即可;显然不能为直角;当为直角时,根据计算即可;当为直角时,根据计算即可;(2)连接,证得为等腰直角三角形,根据SAS可证得,根据条件可求得,根据勾股定理求得,即可求得答案;(3)根据三角形中位线定理,可证得是等腰直角三角形,求得,当取最大时,面积最大,当取最小时,面积最小,即可求得答案【详解】(1),或;显然不能为直角;当为直角时,即,解得:;当为直角时, 即,;综上:长为或;(2)如图,连接, 根据旋转的性质得:为等腰直角三角形,在和中,又,;(3)发生变化,存在最大值和最小值,理

23、由:如图,点P,M分别是,的中点,点N,P分别是,的中点,是等腰三角形,是等腰直角三角形;,当取最大时,面积最大,当取最小时,面积最小,故:的面积发生变化,存在最大值和最小值,最大值为:,最小值为:【点睛】本题是几何变换综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,有一定的难度22、(1),(1,4);(2),P(,)【解析】(1)根据题意将已知点的坐标代入已知的抛物线的解析式,利用待定系数法确定抛物线的解析式并写出其顶点坐标即可;(2)根据题意设P点的坐标为(t,)(3t0),并用分割法将

24、四边形的面积S四边形BCPA= SOBCSOAPSOPC,得到二次函数运用配方法求得最值即可【详解】解:(1)该抛物线过点C(0,3),可设该抛物线的解析式为,与x轴交于点A和点B(1,0),其对称轴l为x=1,此抛物线的解析式为,其顶点坐标为(1,4);(2)如图:可知A(3,0),OA3,OB1,OC3设P点的坐标为(t,)(3t0)S四边形BCPASOBCSOAPSOPCOBOCOAyPxCOC133()|t|3当t时,四边形PABC的面积有最大值P(,).【点睛】本题考查二次函数综合题用待定系数法求函数的解析式时要灵活地根据已知条件选择配方法和公式法,注意求抛物线的最值的方法是配方法2

25、3、(1)2000;(2)售价是75元,售价为85元,利润最大为3125元【分析】(1)用每件利润乘以50件即可;(2)每件售价降价x元,则每件利润为(100-60-x)元,销售量为(50+5x)件,它们的乘积为利润y,利用y=2625得到方程(100-60-x)(50+5x)=2625,然后解方程即可;由于y=(100-60-x)(50+5x),则可利用二次函数的性质确定最大利润值【详解】解:(1)解:(1)该网店销售该商品原来一天可获利润为(100-60)50=2000(元),故答案为2000;(2)解得或,又因尽量多增加销售量,故.售价是元答:每件商品的售价应降价25元;,当时,售价为元

26、,利润最大为3125元答:答:当该商品每件售价为85元时,该网店一天所获利润最大,最大利润值为3125元【点睛】本题考查了二次函数的应用:在商品经营活动中,经常会遇到求最大利润,最大销量等问题解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围24、(1)b2;CBE面积的最大值为1,此时E(1,2);(2)b1+ 或b,(,)【分析】(1)将点B(2,0)代入yx2+x+b即可求b;设E(m,m2+m+2),求出BC的直线解析式为yx+2,和过点E与BC垂直的直线解析式为yxm2+2,求出两直线交点F,则EF最大时,CBE面积的最大;(2)可求C(0,b),B(,0),设M(t,t2+t+b),利用对角线互相平分的四边形是平行四边形,则分三种情况求解:当CM和BD为平行四边形的对角线时,0,解得b1+;当BM和CD为平行四边形的对角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论